使用morphia对基于mongodb应用开发

阅读更多

         最近初学了下mongoDB,作为比较火的一个NoSQL数据库,确实比较强大,但是这几天学下来更多的感觉到的是学习、使用都很方便。

          首先是初学者体验使用方便,直接下载(http://www.mongodb.org/downloads)解压,然后启一下服务便可使用:mongod --dbpath your_db_data_dir,启动以后默认端口27017,  默认http端口28017,可以通过http://localhost: 28017 查看基本信息。当然,如果你还没有下载的想法,可以直接在其官网上尝试Try The Online Shell,就可以使用其来做各种操作,当然online的功能较少。

         其次,一改关系数据库的表模型,mongodb是一个以松散的集合形势呈现,这种 no shema让我感觉非常方便。从开发人员的角度看,mongodb中的每一个数据对象就是一个JSON,所有的操作(save,update,find etc.)都可以像操作JSON一样,当然mongodb数据是一种叫做BSON格式的,即Binary JSONhttp://bsonspec.org/ 。例如:

将文档{ name:”abc”,age:12}插入到users集合:

db.users.insert ({name:”abc”,age:12})

修改文档,增加其emails属性:

db.users.update(

{name:"abc"},

{"$set": {emails:["[email protected]","[email protected]"]}}

)

查找所有users文档:

db.users.find();

查找age > 20的前5个:

db.users.find({

age: {“$gt”:20}

                }).limit(5)

删除:db.users.delete({name:”abc”})

         这些基本的操作不一一例举,包括像index的操作,统计函数等,总之,一切都是文档:查询表达式是文档、返回数据是文档、修改数据的新值是文档、index的操作也是文档形式等等。另外,诸如其支持的MAPREDUCE操作,只需在其规范内定义自己的mapreduce函数即可完成简单MR计算;使用GridFS规范来存储大文件。

          最后的方便之处就是对很多开发语言的支持,PHP, Java, Python, Ruby, Perl。这里我就使用Morphia来做一个非常简单demo: 假设一千个店铺(store)分布在不同的地方(place),每个地方都有一个二维的坐标(x,y)用来表示其位置,我们可以很方便的查找到诸如 ***地方最近的***店铺。整个例子分三步:

1)      准备数据

2)      测试数据是否准备好

3)      查找店铺

        使用jars:  mongo-2.7.0.jar,   morphia-0.98.jar

    下面是两个model类:

@Entity(value="stores",noClassnameStored=true)
public class Store {
	@Id
	private ObjectId id;
	private String name;
	private String desc;
	@Embedded
	public Place place;
	@Override
	public String toString() {
	   return "Store [desc=" + desc + ", id=" + id + ", name=" + 
                          name + ", place=" + place + "]";
	}

	public Store(){}
	public Store(String name, String desc, Place place) {
		this.name = name;
		this.desc = desc;
		this.place = place;
	}
//省略getter,setters
}

 

 

@Embedded
public class Place {

	private String name = "";
	@Indexed(IndexDirection.GEO2D)
	private double[] loc = null;

	public Place(String name, double[] loc) {
		this.name = name;
		this.loc = loc;
	}

	public Place() {
	}

	@Override
	public String toString() {
		return "Place [loc=" + Arrays.toString(loc) + ", name=" + name + "]";
	}
	//省略getter,setters	
}

 

   因为morphia提供了BasicDao,所以这里就准备一个简单的Dao:

package morphia.dao;
import java.util.List;
import morphia.model.Place;
import morphia.model.Store;
import com.google.code.morphia.Datastore;
import com.google.code.morphia.dao.BasicDAO;
import com.google.code.morphia.query.Query;

public class StoreDao extends BasicDAO {
	public StoreDao(Datastore ds) {
		super(ds);
		ds.ensureIndexes();
		ds.ensureCaps();
	}
	/**
	 * 查找离 p 最近的5个店铺
	 * @param p
	 * @return
	 */
	public List findNearPlace(Place p) {
		return ds.createQuery(Store.class).field("place.loc").near(p.getLoc()[0], p.getLoc()[1]).limit(5).asList();
	}
	/**
	 * 查找离 p 最近的5个肯德基店
	 * @param p
	 * @return
	 */
	public List findKFCNearPlace(Place p) {
		return ds.createQuery(Store.class).filter("name", "肯德基").field("place.loc").near(p.getLoc()[0], p.getLoc()[1]).limit(5).asList();
	}
	/**
	 * 删除所有店铺
	 */
	public void deleteAllStore(){
		Query q = ds.createQuery(Store.class);
		ds.delete(q);
	}
}

 

    接下来就可以写测试类了:

package mongo.morphia.test;
import java.util.List;
import morphia.dao.PlaceDao;
import morphia.dao.StoreDao;
import morphia.model.Place;
import morphia.model.Store;
import com.google.code.morphia.Datastore;
import com.google.code.morphia.Morphia;
import com.mongodb.Mongo;
public class StoreDaoTest {
	public static String[] STORE_TYPE = {"肯德基","麦当劳","必胜客","吉野家","蒸功夫"};
	public static StoreDaoTest m = new StoreDaoTest();
	static DaoHolder daoHolder = new DaoHolder();
	//测试保存,准备一千家店铺的数据
	public void testSave(){
		long start = System.currentTimeMillis();
		for( int i = 0; i < 1000; i++){
			double x = Math.round(Math.random() * 10000)/100.0D;
			double y = Math.round(Math.random() * 10000)/100.0D;
			Place p = new Place("Place_"+x+"_"+y,new double[]{x,y});
			Store s = new Store(STORE_TYPE[i%5],STORE_TYPE[i%5]+"@"+p.getName(),p);
			daoHolder.storeDao.save(s);
		}
		System.out.println(System.currentTimeMillis() - start);
	}
	//测试删除
	public void testDeleteAll(){
		System.out.println("Before delete the number of stores is: " + daoHolder.storeDao.count());
		daoHolder.storeDao.deleteAllStore();
		System.out.println("After delete the number of stores is: " + daoHolder.storeDao.count());
	}
	//根据地理位置查找
	public void testFindNearPlace(){
		Place p = new Place("somewhere",new double[]{23.5,67.8});
		System.out.println("Find 5 stores near "+ p.toString());
		List list = daoHolder.storeDao.findNearPlace(p);
		for( Store s : list)
			System.out.println(s.toString());
		
		System.out.println("Find 5 KFC stores near "+ p.toString());
		list = daoHolder.storeDao.findKFCNearPlace(p);
		for( Store s : list)
			System.out.println(s.toString());
	}
	//查找所有store
	public void testFindAll(){
		long start = System.currentTimeMillis();
		List list = daoHolder.storeDao.find().asList();
		for( Store s : list)
			System.out.println(s.toString());
		System.out.println(System.currentTimeMillis() - start);
	}
	
	static class DaoHolder{
		PlaceDao placeDao;
		StoreDao storeDao;
		public DaoHolder(){
			try {
				Mongo mongo = new Mongo("localhost",27017);
				Morphia morphia = new Morphia();
				Datastore ds = morphia.createDatastore(mongo, "testDB");
				placeDao = new PlaceDao(ds);
				storeDao = new StoreDao(ds);
			} catch (Exception e) {
				e.printStackTrace();
			}
		}
	}
}

 

    首先, 通过调用StoreDaoTest.m.testSave()保存一千家店铺,用来做数据准备。

     其次,通过调用StoreDaoTest.m.testFindAll()查看数据是否ok,当然也可以通过shell窗口查看。

     现在可以通过 StoreDaoTest.m.testFindNearPlace()来查找地方p附近的相关店铺了,在这个方法中,我查了两次,一次是查找离p[loc=[23.5, 67.8], name=somewhere]最近的任意五个店铺,dao中这样写:

ds.createQuery(Store.class).field("place.loc").near(p.getLoc()[0], p.getLoc()[1]).limit(5).asList();

第二次是查找离p[loc=[23.5, 67.8], name=somewhere]最近的五个肯德基店铺,dao中这样写:

ds.createQuery(Store.class).filter("name", "肯德基")

.field("place.loc").near(p.getLoc()[0], p.getLoc()[1]).limit(5).asList();

输出结果:

Find 5 stores near Place [loc=[23.5, 67.8], name=somewhere]
Store [desc=麦当劳@Place_24.42_67.77, id=4ef9cc2cec9dcb16b1b552d2, name=麦当劳, place=Place [loc=[24.42, 67.77], name=Place_24.42_67.77]]
Store [desc=蒸功夫@Place_24.32_70.0, id=4ef9cc2dec9dcb16b1b553b6, name=蒸功夫, place=Place [loc=[24.32, 70.0], name=Place_24.32_70.0]]
Store [desc=必胜客@Place_24.08_64.89, id=4ef9cc2dec9dcb16b1b5544f, name=必胜客, place=Place [loc=[24.08, 64.89], name=Place_24.08_64.89]]
Store [desc=肯德基@Place_21.05_65.88, id=4ef9cc2dec9dcb16b1b5539e, name=肯德基, place=Place [loc=[21.05, 65.88], name=Place_21.05_65.88]]
Store [desc=吉野家@Place_25.78_65.66, id=4ef9cc2cec9dcb16b1b551f3, name=吉野家, place=Place [loc=[25.78, 65.66], name=Place_25.78_65.66]]
Find 5 KFC stores near Place [loc=[23.5, 67.8], name=somewhere]
Store [desc=肯德基@Place_21.05_65.88, id=4ef9cc2dec9dcb16b1b5539e, name=肯德基, place=Place [loc=[21.05, 65.88], name=Place_21.05_65.88]]
Store [desc=肯德基@Place_21.13_74.42, id=4ef9cc2dec9dcb16b1b5550b, name=肯德基, place=Place [loc=[21.13, 74.42], name=Place_21.13_74.42]]
Store [desc=肯德基@Place_20.26_77.73, id=4ef9cc2cec9dcb16b1b55204, name=肯德基, place=Place [loc=[20.26, 77.73], name=Place_20.26_77.73]]
Store [desc=肯德基@Place_32.55_73.14, id=4ef9cc2cec9dcb16b1b552ae, name=肯德基, place=Place [loc=[32.55, 73.14], name=Place_32.55_73.14]]
Store [desc=肯德基@Place_19.01_77.68, id=4ef9cc2cec9dcb16b1b55209, name=肯德基, place=Place [loc=[19.01, 77.68], name=Place_19.01_77.68]]

 

 

     最后当然也可以通过StoreDaoTest.m.testDeleteAll() 删除所有测试数据。例子很简单,是我这个礼拜学习的一个小结吧,不罗嗦了。当然很多mongodb的操作命令就不记录了,有用到了再查吧,接下来会去学习一下spring data整合mongodb。

你可能感兴趣的:(Mongodb,Morphia)