闲暇写一个外包网站的爬虫,万一你从这个外包网站弄点外快呢

数据分析

官方网址为 https://www.clouderwork.com/

进入全部项目列表页面,很容易分辨出来项目的分页方式

得到异步请求

Request URL:https://www.clouderwork.com/api/v2/jobs/search?ts=1546395904852&keyword=&budget_range=&work_status=&pagesize=20&pagenum=3&sort=1&scope=
Request Method:GET
Status Code:200 OK

参数如下

    ts:1546395904852  # 时间戳
    keyword:   # 搜索关键字,查找全部,使用空即可
    budget_range:   # 暂时无用
    work_status:
    pagesize:20   # 每页数据量
    pagenum:3   # 页码
    sort:1   # 排序规则
    scope:
Python资源分享qun 784758214 ,内有安装包,PDF,学习视频,这里是Python学习者的聚集地,零基础,进阶,都欢迎

下面就是拼接请求了,一下确定request相关参数

Accept:application/json, text/javascript, */*; q=0.01
Accept-Encoding:gzip, deflate, br
Accept-Language:zh-CN,zh;q=0.9
Connection:keep-alive
Cookie:
Host:www.clouderwork.com
Referer:https://www.clouderwork.com/jobs?keyword=
User-Agent:Mozilla/5.0 你自己的UA QQBrowser/10.3.3006.400
X-Requested-With:XMLHttpRequest

采用爬虫scrapy
这个网站没有反爬措施,所以直接上就可以了

# -*- coding: utf-8 -*-
import scrapy
from scrapy import Request
import time
import json

class CloudeworkSpider(scrapy.Spider):
    name = 'cloudework'
    allowed_domains = ['www.clouderwork.com']
    start_url = 'https://www.clouderwork.com/api/v2/jobs/search?ts={times}&keyword=&budget_range=&work_status=&pagesize={pagesize}&pagenum={pagenum}&sort=1&scope='

    def start_requests(self):
        for page in range(1,353):
            yield Request(self.start_url.format(times=time.time(),pagesize=20,pagenum=page))

    def parse(self, response):
        json_data = json.loads(response.text)
        for item in  json_data["jobs"]:
            yield item

存储数据到mongodb中,合计爬取到7000+数据

数据分析

从mongdo读取数据

import pymongo
import pandas as pd
from pandas import Series,DataFrame
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
# 连接数据库
client = pymongo.MongoClient("localhost",27017)
cloud = client["cloud"]
collection = cloud["cloudework"]

# 加载数据
data = DataFrame(list(collection.find()))

结果显示为 [7032 rows x 35 columns]

查看数据基本情况

使用直接data.shape可以查看一下数据的基本情况

查看一下工期的分布

periods = data.groupby(["period"]).size()

x = periods.index 
y = periods.values 
plt.figure()
plt.scatter(x,y, color="#03a9f4", alpha = 0.5) # 绘制图表
plt.xlim((0, 360))
plt.ylim((0, 2000))
plt.xlabel("工期")
plt.ylabel("项目数")
plt.show()

可以看到数据散点集中在0〜50天

过滤一下40天以内的数据

periods = data.groupby(["period"]).size().reset_index(name="count")

df = periods[periods["period"]<=40]

x = df["period"]
y = df["count"]

plt.figure()
plt.scatter(x,y,label='项目数折线',color="#ff44cc")
plt.title("工期对应项目数")
plt.xlim((0, 360))
plt.ylim((0, 500))
plt.show()

发现竟然有1天工期的任务,可以瞅瞅都是什么任务

periods = data.groupby(["period"]).size()
data[data["period"]==1][["name","period"]]

果然比较简单唉~~不过也没有多少钱,有个急活1000¥

查看阅览量排行Top10

views = data["views_count"]
top10 = views.sort_values(ascending=False)[:10]

top10 = data[data.views_count.isin(top10.values)][["name","views_count","period","summary"]]
top10
Python资源分享qun 784758214 ,内有安装包,PDF,学习视频,这里是Python学习者的聚集地,零基础,进阶,都欢迎

查阅一下开发模式

看一下什么类型的项目比较多???数据上反应,网络网站和APP最多了,所以这方面的技能的大神么,可以冲一波了