最大子矩阵问题实例解析

问题:
求一个M*N的矩阵的最大子矩阵和。
比如在如下这个矩阵中:

 0 -2 -7 0
 9 2 -6 2
-4 1 -4 1
-1 8 0 -2 

拥有最大和的子矩阵为:

 9 2
-4 1
-1 8

其和为15。
思路:
首先,这个子矩阵可以是任意大小的,而且起始点也可以在任何地方,所以,要把最大子矩阵找出来,我们要考虑多种情况。
假定原始矩阵的行数为M,那么对于子矩阵,它的行数可以是1到M的任何一个数,而且,对于一个K行(K < M)的子矩阵,它的第一行可以是原始矩阵的第1行到 M - K + 1 的任意一行。
例子:
对于上面的矩阵,如果子矩阵的行数是2,那么它可以是下面几个矩阵的子矩阵:

 0 -2 -7 0
 9 2 -6 2

或者

 9 2 -6 2
-4 1 -4 1

或者

-4 1 -4 1
-1 8 0 -2 

在每一种情况里(我们这里有三种),我们还要找出一个最大的子矩阵,当然,这只是一种情况的最大子矩阵(局部最大),不一定是global最大。但是,如果我们知道每一种情况的最大,要找出global最大,那就小菜一碟儿了。
在讲在一个特殊情况下求最大子矩阵之前,先讲一个事实:
假设这个最大子矩阵的维数是一维,要找出最大子矩阵, 原理与求“最大子段和问题” 是一样的。最大子段和问题的递推公式是 b[j]=max{b[j-1]+a[j], a[j]},b[j] 指的是从0开始到j的最大子段和。

Java实现示例:
假设原始矩阵为:[9,  2, -6,  2], 那么b[] = {9, 11, 5, 7}, 那么最大字段和为11, 如果找最大子矩阵的话,那么这个子矩阵是 [9, 2]
求最大子段和的代码如下:

public int maxSubsequence(int[] array) {
 if (array.length == 0) {
 return 0;
 }
 int max = Integer.MIN_VALUE;
 int[] maxSub = new int[array.length];
 maxSub[0] = array[0];
 
 for (int i = 1; i < array.length; i++) {
 maxSub[i] = (maxSub[i-1] > 0) ? (maxSub[i-1] + array[i]) : array[i]; 
 if (max < maxSub[i]) {
 max = maxSub[i];
 }
 }
 return max;
 }

 但是,原始矩阵可以是二维的。假设原始矩阵是一个3 * n 的矩阵,那么它的子矩阵可以是 1 * k, 2 * k, 3 * k,(1 <= k <= n)。 如果是1*K,这里有3种情况:子矩阵在第一行,子矩阵在第二行,子矩阵在第三行。如果是 2 * k,这里有两种情况,子矩阵在第一、二行,子矩阵在第二、三行。如果是3 * k,只有一种情况。
为了能够找出最大的子矩阵,我们需要考虑所有的情况。假设这个子矩阵是 2 *k, 也就是说它只有两行,要找出最大子矩阵,我们要从左到右不断的遍历才能找出在这种情况下的最大子矩阵。如果我们把这两行上下相加,情况就和求“最大子段和问题” 又是一样的了。
为了找出在原始矩阵里的最大子矩阵,我们要遍历所有的子矩阵的可能情况,也就是说,我们要考虑这个子矩阵有可能只有1行,2行,。。。到n行。而在每一种情况下,我们都要把它所对应的矩阵部分上下相加才求最大子矩阵(局部)。
比如,假设子矩阵是一个3*k的矩阵,而且,它的一行是原始矩阵的第二行,那么,我们就要在

 9 2 -6 2
-4 1 -4 1
-1 8 0 -2 

里找最大的子矩阵。
如果把它上下相加,我们就变成了 4, 11, -10,1, 从这个数列里可以看出,在这种情况下,最大子矩阵是一个3*2的矩阵,最大和是15.
为了能够在原始矩阵里很快得到从 i 行到 j 行 的上下值之和,我们这里用到了一个辅助矩阵,它是原始矩阵从上到下加下来的。
假设原始矩阵是matrix, 它每一层上下相加后得到的矩阵是total,那么我们可以通过如下代码实现:

int[][] total = matrix;
for (int i = 1; i < matrix[0].length; i++) {
 for (int j = 0; j < matrix.length; j++) {
 total[i][j] += total[i-1][j];
 }
}

如果我们要求第 i 行到第 j 行之间上下值的和,我们可以通过total[j][k] - total[i-1][k] 得到, k 的范围从1 到 matrix[0].length - 1。
有了这些知识点,我们只需要在所有的情况下,把它们所对应的局部最大子矩阵进行比较,就可以得到全局最大的子矩阵。代码如下:

public int subMaxMatrix(int[][] matrix) {
 
 int[][] total = matrix;
 for (int i = 1; i < matrix[0].length; i++) {
 for (int j = 0; j < matrix.length; j++) {
 total[i][j] += total[i-1][j];
 }
 }
 
 int maximum = Integer.MIN_VALUE;
 for (int i = 0; i < matrix.length; i++) {
 for (int j = i; j < matrix.length; j++) {
 //result 保存的是从 i 行 到第 j 行 所对应的矩阵上下值的和
        int[] result = new int[matrix[0].length];
 for (int f = 0; f < matrix[0].length; f++) {
  if (i == 0) {
  result[f] = total[j][f];
  } else {
  result[f] = total[j][f] - total[i - 1][f];
  }
 }
 int maximal = maxSubsequence(result);
 
 if (maximal > maximum) {
  maximum = maximal;
 }
 }
 }
 
 return maximum;
 }

C语言相关的实现

题目

    题目描述: 
    已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵。 
    比如,如下4 * 4的矩阵  
      

 0 -2 -7 0 
 9 2 -6 2 
 -4 1 -4 1 
 -1 8 0 -2 

      
    的最大子矩阵是  
      

 9 2 
 -4 1 
 -1 8 

      
    这个子矩阵的大小是15。 
    输入: 
    输入是一个N * N的矩阵。输入的第一行给出N (0 < N <= 100)。 
    再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N2个整数,整数之间由空白字符分隔(空格或者空行)。 
    已知矩阵中整数的范围都在[-127, 127]。 
    输出: 
    测试数据可能有多组,对于每组测试数据,输出最大子矩阵的大小。 
    样例输入:  
    4 
    0 -2 -7 0 
    9 2 -6 2 
    -4 1 -4  1 
    -1 8  0 -2  
    样例输出: 
    15 


AC代码

 #include  
 #include  
  
 int main(void) 
 { 
  int i, j, h, k, n, max, sum, cur, matrix[101][101]; 
  
  while (scanf("%d", &n) != EOF) { 
   // 初始化接收矩阵 
   for (i = 0; i < n; i ++) { 
    for (j = 0; j < n; j ++) 
     scanf("%d", *(matrix + i) + j); 
   } 
  
   // 动态规划(类似于一维数组连续最大子序列和) 
   max = matrix[0][0]; 
  
   for (i = 0; i < n; i ++) { 
    // i,j确定上下界 
    for (j = i; j < n; j ++) {  
     // 初始化 
     for (k = i, sum = 0; k <= j; k ++) 
      sum += matrix[k][0]; 
     if (sum > max) 
      max = sum; 
  
     for (h = 1; h < n; h ++) { 
      for (k = i, cur = 0; k <= j; k ++) 
       cur += matrix[k][h]; 
  
      if (sum >= 0) 
       sum += cur; 
      else 
       sum = cur; 
  
      if (sum > max) max = sum; 
     } 
    } 
   } 
  
   printf("%d\n", max); 
  } 
  
  return 0; 
 } 

你可能感兴趣的:(最大子矩阵问题实例解析)