吴恩达神经网络与深度学习——神经网络基础习题1

吴恩达神经网络与深度学习——神经网络基础习题

  • python numpy 基础
    • 用numpy建立一个基础函数
      • sigmoid 函数
        • math库
        • numpy库
      • Sigmoid 导数
      • sigmoid_derivative.py
      • Reshaping arrays
      • Normalizing rows
      • Broadcasting and the softmax function
    • Vectorization
      • Implement the L1 and L2 loss functions
        • L1正则化
        • L2正则化

python numpy 基础

1.使用iPython Notebooks
2.使用numpy 函数 and numpy矩阵或向量操作
3.理解"broadcasting"
4.向量化代码

用numpy建立一个基础函数

sigmoid 函数

吴恩达神经网络与深度学习——神经网络基础习题1_第1张图片

math库

# GRADED FUNCTION: basic_sigmoid

import math

def basic_sigmoid(x):
    """
    Compute sigmoid of x.

    Arguments:
    x -- A scalar

    Return:
    s -- sigmoid(x)
    """
    
    ### START CODE HERE ### (≈ 1 line of code)
    s = 1/(1+math.exp(-x))
    ### END CODE HERE ###
    
    return s

在这里插入图片描述

实际上,我们很少在深度学习中使用math库,因为函数的输入是实数。在深度学习中,我们主要使用矩阵和向量。这就是为什么numpy更有用。

numpy库

事实上,如果x = ( x1,x2,...xn )是行向量,则np.exp(x)将对x的每个元素应用指数函数。因此输出将是np.exp(x)=(ex1,ex2...exn)
# GRADED FUNCTION: sigmoid

import numpy as np # this means you can access numpy functions by writing np.function() instead of numpy.function()

def sigmoid(x):
    """
    Compute the sigmoid of x

    Arguments:
    x -- A scalar or numpy array of any size

    Return:
    s -- sigmoid(x)
    """
    
    ### START CODE HERE ### (≈ 1 line of code)
    s = 1 / (1 + np.exp(-x))
    ### END CODE HERE ###
    
    return s

在这里插入图片描述

Sigmoid 导数

sigmoid_derivative.py

# GRADED FUNCTION: sigmoid_derivative

def sigmoid_derivative(x):
    """
    Compute the gradient (also called the slope or derivative) of the sigmoid function with respect to its input x.
    You can store the output of the sigmoid function into variables and then use it to calculate the gradient.
    
    Arguments:
    x -- A scalar or numpy array

    Return:
    ds -- Your computed gradient.
    """
    
    ### START CODE HERE ### (≈ 2 lines of code)
    s = sigmoid(x)
    ds = s*(1-s)
    ### END CODE HERE ###
    
    return ds
x = np.array([1, 2, 3])
print ("sigmoid_derivative(x) = " + str(sigmoid_derivative(x)))

在这里插入图片描述

Reshaping arrays

X.shape:得到矩阵或向量的维度
X.reshape():将X转化成别的维度
def image2vector(image):
    v = image.reshape(image.shape[0]*image.shape[1]*image.shape[2],1)
    return v
import numpy as np
image = np.random.rand(3,3,3)
image2vector(image)

吴恩达神经网络与深度学习——神经网络基础习题1_第2张图片

Normalizing rows

吴恩达神经网络与深度学习——神经网络基础习题1_第3张图片

# GRADED FUNCTION: normalizeRows

def normalizeRows(x):
    """
    Implement a function that normalizes each row of the matrix x (to have unit length).
    
    Argument:
    x -- A numpy matrix of shape (n, m)
    
    Returns:
    x -- The normalized (by row) numpy matrix. You are allowed to modify x.
    """
    
    ### START CODE HERE ### (≈ 2 lines of code)
    # Compute x_norm as the norm 2 of x. Use np.linalg.norm(..., ord = 2, axis = ..., keepdims = True)
    x_norm = np.linalg.norm(x,ord=2,axis = 1,keepdims = True)
    # Divide x by its norm.
    x = x/x_norm
    # Divide x by its norm.
    ### END CODE HERE ###

    return x
x = np.array([
    [0, 3, 4],
    [2, 6, 4]])
print("normalizeRows(x) = " + str(normalizeRows(x)))
print("x shape:"+ str(x.shape))

在这里插入图片描述

Broadcasting and the softmax function

吴恩达神经网络与深度学习——神经网络基础习题1_第4张图片

# GRADED FUNCTION: softmax

def softmax(x):
    """Calculates the softmax for each row of the input x.

    Your code should work for a row vector and also for matrices of shape (n, m).

    Argument:
    x -- A numpy matrix of shape (n,m)

    Returns:
    s -- A numpy matrix equal to the softmax of x, of shape (n,m)
    """
    
    ### START CODE HERE ### (≈ 3 lines of code)
    # Apply exp() element-wise to x. Use np.exp(...).
    x = np.exp(x)

    # Create a vector x_sum that sums each row of x_exp. Use np.sum(..., axis = 1, keepdims = True).
    x_sum = np.sum(x,axis = 1,keepdims = True)
    # Compute softmax(x) by dividing x_exp by x_sum. It should automatically use numpy broadcasting.
    s = x/x_sum

    ### END CODE HERE ###
    
    return s
x = np.array([
    [9, 2, 5, 0, 0],
    [7, 5, 0, 0 ,0]])
print("softmax(x) = " + str(softmax(x)))

在这里插入图片描述

Vectorization

Implement the L1 and L2 loss functions

L1正则化

在这里插入图片描述

# GRADED FUNCTION: L1

def L1(yhat, y):
    """
    Arguments:
    yhat -- vector of size m (predicted labels)
    y -- vector of size m (true labels)
    
    Returns:
    loss -- the value of the L1 loss function defined above
    """
    
    ### START CODE HERE ### (≈ 1 line of code)
    #loss = np.sum(np.abs(y-yhat),axis = 0,keepdims = True)
    loss = np.sum(np.abs(y-yhat))
    ### END CODE HERE ###
    
    return loss
yhat = np.array([.9, 0.2, 0.1, .4, .9])
y = np.array([1, 0, 0, 1, 1])
print("L1 = " + str(L1(yhat,y)))

在这里插入图片描述

L2正则化

在这里插入图片描述

# GRADED FUNCTION: L2

def L2(yhat, y):
    """
    Arguments:
    yhat -- vector of size m (predicted labels)
    y -- vector of size m (true labels)
    
    Returns:
    loss -- the value of the L2 loss function defined above
    """
    
    ### START CODE HERE ### (≈ 1 line of code)
    loss = np.sum(np.square(y-yhat))
    ### END CODE HERE ###
    
    return loss
yhat = np.array([.9, 0.2, 0.1, .4, .9])
y = np.array([1, 0, 0, 1, 1])
print("L2 = " + str(L2(yhat,y)))

在这里插入图片描述
np.sum()函数
np.linalg.norm()函数

你可能感兴趣的:(神经网络与深度学习)