本文转载自:https://www.leiphone.com/news/201703/84gDbSOgJcxiC3DW.html
本月初雷锋网报道,Facebook 开源了 AI 相似性搜索工具 Faiss。而在一个月之后的今天,Facebook 发布了对 Faiss 的官方原理介绍。
它是一个能使开发者快速搜索相似多媒体文件的算法库。而该领域一直是传统的搜索引擎的短板。借助Faiss,Facebook 在十亿级数据集上创建的最邻近搜索(nearest neighbor search),比此前的最前沿技术快 8.5 倍,并创造出迄今为止学术圈所见最快的、运行于 GPU 的 k-selection 算法。Facebook 人工智能实验室(FAIR) 借此创造了数个世界纪录,包括在十亿高维矢量上的构建的、世界最快的 k-nearest-neighbor 图。
传统数据库由包含符号信息的结构表组成。比方说,一个图像集,会用每行放一张索引照片的列表来表示。每一行都包含诸如图像标识和描述语句等信息。每一行也可与其他表格的条目关联,比如照片与人名列表相关联。
雷锋网获知,很多AI 工具都会产生高维矢量,比如像 word2vec 这样的文本嵌入工具,以及用深度学习训练的 CNN 描述符(descriptors)。这些表示比固定的符号表示更加强大灵活,至于原因,本文将为大家解释。但是,用 SQL 来检索的传统数据库并没有适配这些新型表示。首先,海量的新多媒体流创造了数十亿的矢量。其次,而且更重要的是,找到相似的相似的条目意味着找到相近的高维矢量。而对于当下的标准检索语言,这是极度低效、甚至无法实现的。
让我们假设你有一张某建筑的影像,比方说某城市的礼堂照片,但你忘记这是哪一个城市的了。然后,你希望找到图片库中该建筑的所有照片。该情况下,SQL 中常用的 key/value 检索并没有帮助——因为你已经忘了这是哪个城市。
这就轮到相似性搜索派上用场。由于设计,图像的矢量表示会对相似图像生成相近的矢量。在这里,相近矢量被定义为在欧几里得空间相邻的矢量。
另一项矢量表示的应用是分类。想象下你需要一个分类器,来判别图片库中哪一个图片代表了菊花。分类器的训练是一个开发者们都比较熟悉的过程:算法把菊花和非菊花的图像作为输入。若果分类器是线性的,它会输出一个分类矢量,后者带有一项重要属性:它的向量点积(Dot Product)和图像矢量在一起,能反映出该图像包含菊花的概率。然后对向量点积和图片库中的所有条目进行计算。最后 return 有最高概率值的图像。这种检索是一种“最大内积”搜索。
所以,对于相似性搜索和分类,我们需要以下操作:
给定检索矢量,return 在欧几里得距离上最接近这个矢量的数据库对象列表。
给定检索矢量,return 有最高向量点积的数据库对象列表。
一个额外的挑战,是 Facebook 想要在一个大尺度上执行这些操作。这里,“大尺度”指的是数十亿的矢量。
现有的软件工具,不足以完成上述数据库搜索操作。传统的 SQL 数据库系统可用性不高,因为它们是为 hash-based searches 或 1D interval searches 而优化。OpenCV 等工具包里包含的相似性搜索功能,在扩展性上的限制非常大。针对“小”数据集的相似性搜索算法库也是这么个情况(比如,一百万个矢量)。其他工具包大多是学术研究的产物,为发表的论文而开发,用来在特定设定下展示效果。
Faiss 是一个打破上述限制的算法库。它的优点有:
提供数个相似性搜索方法。这些方法针对不同使用情况,提供了跨度很大的功能取舍。
为内存的使用和速度而优化。
为相关索引方法提供了最前沿的 GPU 执行方案。
一旦这些矢量被学习机提取出来(从图像、视频、文本文件或其他渠道),它们就已经可以被输入进相似性搜索库。
Facebook 有一个作为参照的“暴力”算法——它会完整地照章计算所有的相似性,然后 return 最相似元素的列表。这提供了一个黄金结果参照列表。值得注意的是,高效得执行该暴力算法不容易实现,而且经常影响系统其它部分的效果。
如果我们愿意牺牲一部分精确度,相似性搜索的速度可以有数个数量级的提升。当然,这会导致相对参照结果的一点偏移。举个例子,对图像相似性搜索的第一和第二个结果进行交换,或许不会有什么区别,因为它们很可能都是某个给定检索的正确答案。加速搜索意味着要对数据集进行一些预处理,Facebook 把这成为索引。
这使 Facebook 确定了三大研究方向:
速度。找到十个最相似的矢量需要多久?希望花费的时间比暴力算法要少。不然的话,索引就没有任何意义。
内存使用。该方法需要多少 RAM?比原始矢量多还是少? Faiss 只支持在 RAM 上搜索,因为其他磁盘数据库的速度要慢数个数量级。即便是 SSD 也太慢。
精确度。返回的结果列表与暴力搜索结果差多少?精确度能通过计算检索数量,在结果列表中先返回最邻近单位评估;或是衡量 10 个最先返回的最邻近单位的平均 fraction (该方法被称之为 10-intersection)。
Facebook 一般会衡量在给定内存使用情况下,速度和精确度之间的权衡。Faiss 专注于压缩原始矢量的方法,因为它们是扩展到十亿级矢量数据集的唯一途径。当需要索引的矢量有十亿个之多,每一个会占用 32 左右的字节,这些矢量会占用极大的内存空间。
许多索引算法库针对的是百万左右的矢量,Facebook 的工程师们把这成为小规模。举个例子,nmslib 就包含这方面极其高效的算法,它比 Faiss 更快但是会占用远远更多的内存空间。
工程世界中,并没有针对这个大小数据集的基准。因此,Facebook 基于研究结果进行评估。
精确度在 Deep1B 上进行评估,它是包含十亿张图片的图像库。每一个图像都已经被 CNN 处理过,CNN 中的其中一个 activation map,会被作为图像 描述符(descriptor)。这些矢量可以与欧几里得距离进行比较,来量化这些图像之间的相似度。
Deep1B 包含一个比较小的检索图像库。真实的相似性搜索结果,由处理了这些图像的暴力算法提供。因此,如果我们运行一个搜索算法,我们就可以评估结果中的 1-recall@1。
由于评估,我们把内存使用限制在 30 GB。该内存限制指导我们进行索引方法和参数的选择。在 FAISS,索引方法用字符串来表示;在这个例子中是OPQ20_80,IMI2x14,PQ20。
该字符串代表了应用于矢量的预处理步骤 (OPQ20_80) 。一个 selection mechanism (IMI2x14) 来指示数据库应该如何被分割,以及一个编码部分(encoding component PQ20)来指示用 product quantizer (PQ) 编码的矢量,生成 20 字节的代码。因此,内存的占用(包括了 overheads)在 30GB 以下。
这听起来太技术流,因此 Faiss 的文件会向开发者提供指导:如何根据需要选择最恰当的索引类型。
索引类型确定之后,就可以开始索引。FAISS 算法库对这十亿个矢量进行处理,并把他们放入索引。索引能够存在硬盘,或者立即使用,对索引的搜索、additions/removals 可被交错插入。
当索引就绪后,一系列 search-time 的参数可设为针对此方法进行调整。由于评估需要,我们用单线程进行搜索。由于内存占用已经被限制住,我们需要在精确度和搜索时间之间进行权衡、优化。举个例子,这意味着能对 1-recall@1 40% 的最不可能搜索时间设置参数。
幸运的是,Faiss 配有自动调参机制,能扫描参数空间,并对提供了最佳操作点(operating points)的那些进行。这意味着给定精确度情况下的最优潜在搜索时间,或者反过来,给定搜索时间的最优精确度。在 Deep1B 上,操作点可用折线图的形式进行可视化。
这幅图上,我们可读出,获取 40% 的 1-recall@1,有少于每矢量 2 ms的检索时间。如果把检索时间放宽到 0.5 ms,我们可以达到 30%。2 ms 的检索时间,意味着单核的 500 QPS(queries per second )。
若把该结果与圈内最先进的研究相比,即 Babenko 和 Lempitsky 在 CVPR 2016 上发表的论文:“Efficient Indexing of Billion-Scale Datasets of Deep Descriptors”。该论文介绍了 Deep1B 数据集。但他们需要 20 ms 来获取 45% 的 1-recall@1。
当前,许多研究努力集中于 GPU 的执行上。在原生多 GPU 支持下,这能够产生相当不错的单机性能。GPU 执行可被看做是对应 CPU 的替代,你其实不需要理解 CUDA API 来挖掘 GPU 的性能。 Faiss 支持所有 2012 年之后发布的英伟达显卡(开普勒,计算能力 3.5+)。
我们希望把 roofline model 作为指南,它指出开发者应尽量使内存带宽或者浮点单位饱和。Faiss 单 GPU 的速度一般比 CPU 快五到十倍。新的帕斯卡架构 GPU 硬件,比如英伟达 P100,使之快了 20 倍有余。
一些展示性能的数字:
合适的索引,一个简单暴力的 k-nearest-neighbor 图(k = 10),基于 YFCC100M 数据集中 9500 万图像的128D CNN 描述符,0.8 的 10-intersection,用四路上代泰坦(Maxwell Titan X)只需要 35 分钟即可建成,包含索引创建时间。
十亿矢量的 k-nearest-neighbor 图已经即将成为现实。开发者可以在 Deep1B 数据集上创建强力的 k-nearest-neighbor 图(k = 10),0.65 的 10-intersection,在四路 Maxwell 泰坦支援下需要 12 个小时。若是 0.8 的 10-intersection,八路帕斯卡 P100-PCIe GPU,也是 12 个小时。更低质量的图可在五小时内用泰坦创建完成。
其他部分也达到了惊人性能。比方说,创建上述 Deep1B 索引需要 6710 万 120-dim 矢量,用 k-means 聚类生成 262,144 个几何中心。这在 25 E-M 次迭代下,需要四路泰坦 (12.6 tflop/s of compute) 花 139 分钟进行处理。注意聚类的训练集不需要与 GPU 显存匹配,因为数据是按需即时导入 GPU 的,而不会影响性能。
雷锋网获知,FAIR(Facebook 人工智能实验室) 自 2015 年着手开发 Faiss。这是建立在过去的许多研究结论和大量技术攻关的基础上。对于 Faiss,Facebook 选择专注于对几项基础技术进行优化。尤其在 CPU 方面,Facebook 大量利用了:
多线程以充分利用多核性能并在多路 GPU 上进行并行搜索。
BLAS 算法库通过 matrix/matrix 乘法进行高效、精确的距离计算。没有 BLAS,高效的强力执行很难达到最优状态。 BLAS/LAPACK 是唯一一个 Faiss 必须的前提软件。
机器 SIMD 矢量化和 popcount 被用于加速孤立矢量的距离计算。
对于从前的相似性搜索 GPU 执行,k-selection(寻找 k-minimum 或 maximum 因子)一直存在性能问题。这是因为普通的 CPU 算法(比如 heap selection)并不适用于 GPU。对于 Faiss GPU,Facebook 设计了学术圈迄今为止最快的小型 k-selection 算法(k <= 1024)。所有中间状态都完全保存在寄存器中,进一步提升了速度。它能够将输入数据以 single pass 进行 k-select,运行于潜在峰值性能的 55%,取决于峰值 GPU 显存带宽。由于其状态只存储在注册表中,并可与其他 kernels 融合,使它成为超级快的 exact 和 approximate 搜索引擎。
研究领域的许多注意力被放到了高效的 tiling 策略,和面向 approximate 搜索的 kernels 执行。多 GPU 支持用过粉碎或复制数据来提供。开发者并不会受单 GPU 显存大小的限制。半精度浮点支持 (float16) 也有提供,可在支持的 GPU 上进行完整 float16 运算,或者更早 GPU 架构所提供的的中级 float16 存储。我们发现 float16 这样的编码矢量能在几乎不损失精度的前提下进行加速。
简而言之,持续的 overhead 因素会在执行中起到作用。Faiss 做了许多关注工程细节的痛苦工作。
Faiss 用 C++ 实现,支持 Python。想要上手的各位,请到 GitHub 获取 Faiss,进行编译,然后把 Faiss 模块导入到 Python。Faiss 与 numpy 能做到完美的整合,包括需借助 numpy 阵列来实现的所有功能 (in float32)。
GitHub 地址:https://github.com/facebookresearch/faiss
详情请访问:https://code.facebook.com/posts/1373769912645926/faiss-a-library-for-efficient-similarity-search/