Flume和Kafka整合安装

版本号:

RedHat6.5   JDK1.8    flume-1.6.0   kafka_2.11-0.8.2.1

1.flume安装

RedHat6.5安装单机flume1.6: http://blog.leanote.com/post/[email protected]/26781d33b435

2.kafka安装

RedHat6.5安装kafka集群 :  http://blog.leanote.com/post/[email protected]/0230848f841a

3.Flume和Kafka整合

在conf目录新建flume-kafka.conf文件:
 
  
  1. touch /usr/local/flume/apache-flume-1.6.0-bin/conf/flume-kafka.conf
  2. sudo gedit /usr/local/flume/apache-flume-1.6.0-bin/conf/flume-kafka.conf
输入以下内容:
 
  
  1. # 指定Agent的组件名称  
  2. agent1.sources = source1  
  3. agent1.sinks = sink1  
  4. agent1.channels = channel1  
  5.  
  6. # 指定Flume source(要监听的路径)  
  7. agent1.sources.source1.type = spooldir  
  8. agent1.sources.source1.spoolDir = /usr/local/flume/logtest
  9.  
  10. # 指定Flume sink  
  11. #agent1.sinks.sink1.type = logger  
  12. agent1.sinks.sink1.type = org.apache.flume.sink.kafka.KafkaSink  
  13. agent1.sinks.sink1.topic = test  
  14. agent1.sinks.sink1.brokerList = 192.168.168.200:9092  
  15. agent1.sinks.sink1.requiredAcks = 1  
  16. agent1.sinks.sink1.batchSize = 100   
  17.  
  18. # 指定Flume channel  
  19. agent1.channels.channel1.type = memory  
  20. agent1.channels.channel1.capacity = 1000  
  21. agent1.channels.channel1.transactionCapacity = 100  
  22.  
  23. # 绑定source和sink到channel上  
  24. agent1.sources.source1.channels = channel1  
  25. agent1.sinks.sink1.channel = channel1  

agent1.sinks.sink1.topic = test   代表flume监听路径下发生变化时,会把消息发送到localhost机器上的test主题。

启动flume-kafka.conf:

 
  
  1. cd /usr/local/flume/apache-flume-1.6.0-bin
  2. bin/flume-ng agent --conf conf --conf-file conf/flume-kafka.conf --name agent1 -Dflume.root.logger=INFO,console

运行成功日志如下:

 
  
  1. 2017-07-07 22:22:02,270 (lifecycleSupervisor-1-2) [INFO - org.apache.flume.instrumentation.MonitoredCounterGroup.register(MonitoredCounterGroup.java:120)] Monitored counter group for type: SINK, name: sink1: Successfully registered new MBean.
  2. 2017-07-07 22:22:02,270 (lifecycleSupervisor-1-2) [INFO - org.apache.flume.instrumentation.MonitoredCounterGroup.start(MonitoredCounterGroup.java:96)] Component type: SINK, name: sink1 started

启动kafka的消费者,监听topic主题:

 
  
  1. kafka-console-consumer.sh --zookeeper localhost:2181 --topic test

testKafka.log :

在/usr/local/flume目录下面新建一个testKafka.log日志文件,写入Flume connect Kafka success! 作为测试内容:
 
  
  1. touch /usr/local/flume/testKafka.log
  2. sudo gedit /usr/local/flume/testKafka.log
Flume和Kafka整合安装_第1张图片
 
然后拷贝testKafka.log到flume监听路径/usr/local/flume/logtest下:
 
  
  1. cp /usr/local/flume/testKafka.log /usr/local/flume/logtest
接着就可以在前一个终端看到刚刚采集的内容了,如下:
---------------------------------kafka------------------------------
 
  
  1. [root@master kafka_2.11-0.9.0.0]# kafka-console-consumer.sh --zookeeper localhost:2181 --topic test  
  2. [2017-07-07 22:36:38,687] INFO [Group Metadata Manager on Broker 200]: Removed 0 expired offsets in 1 milliseconds. (kafka.coordinator.GroupMetadataManager)
  3. Flume connect Kafka success!

 ---------------------------------flume------------------------------

 
  
  1. 2017-07-07 22:41:32,602 (pool-3-thread-1) [INFO - org.apache.flume.client.avro.ReliableSpoolingFileEventReader.rollCurrentFile(ReliableSpoolingFileEventReader.java:348)] Preparing to move file /usr/local/flume/logtest/testKafka.log to /usr/local/flume/logtest/testKafka.log.COMPLETED
  2. 2017-07-07 22:41:35,669 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - kafka.utils.Logging$class.info(Logging.scala:68)] Fetching metadata from broker id:0,host:localhost,port:9092 with correlation id 0 for 1 topic(s) Set(test)
  3. 2017-07-07 22:41:35,728 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - kafka.utils.Logging$class.info(Logging.scala:68)] Connected to localhost:9092 for producing
  4. 2017-07-07 22:41:35,757 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - kafka.utils.Logging$class.info(Logging.scala:68)] Disconnecting from localhost:9092
  5. 2017-07-07 22:41:35,791 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - kafka.utils.Logging$class.info(Logging.scala:68)] Connected to slave2:9092 for producing

你可能感兴趣的:(大数据-Flume)