0、前言
gcc/g++编译优化选项:-O
这个选项控制所有的优化等级。使用优化选项会使编译过程耗费更多的时间,并且占用更多的内存,尤其是在提高优化等级的时候。
-O设置一共有五种:-O0、-O1、-O2、-O3和-Os。你只能在/etc/make.conf里面设置其中的一种。
除了-O0以外,每一个-O设置都会多启用几个选项,请查阅gcc手册的优化选项章节,以便了解每个-O等级启用了哪些选项及它们有何作用。
让我们来逐一考察各个优化等级:
1、实验一
假设现在有如下demo示例:
1 int main(void) {
2 int a = 100 % 128;
3 return 0;
4 }
不指定优化选项时的汇编代码(默认为-O0)
1
2 test.o: file format Mach-O 64-bit x86-64
3
4 Disassembly of section __TEXT,__text:
5 _main:
6 ; int main(void) {
7 0: 55 pushq %rbp
8 1: 48 89 e5 movq %rsp, %rbp
9 4: 31 c0 xorl %eax, %eax
10 6: c7 45 fc 00 00 00 00 movl $0, -4(%rbp)
11 ; int a = 100 % 128;
12 d: c7 45 f8 64 00 00 00 movl $100, -8(%rbp)
13 ; return 0;
14 14: 5d popq %rbp
15 15: c3 retq
结论:虽然没有指定优化选项,但g++还是将100 % 128的结果(100)在编译的时候算出来了,在第12行的地方,通过movl $100, -8(%rbp)指令,将100赋值给了变量a,这不是我们想要的,为了能够在汇编层面看到C++计算取余的方法,我们还需要将程序写的复杂一些,以便能够绕过g++的编译优化。
2、实验二
假设现在有如下demo示例:
1 int main(void) {
2 int a = 100;
3 int b = a % 128;
4 return 0;
5 }
不指定优化选项时的汇编代码(默认为-O0)
1
2 test.o: file format Mach-O 64-bit x86-64
3
4 Disassembly of section __TEXT,__text:
5 _main:
6 ; int main(void) {
7 0: 55 pushq %rbp
8 1: 48 89 e5 movq %rsp, %rbp
9 4: 31 c0 xorl %eax, %eax
10 6: c7 45 fc 00 00 00 00 movl $0, -4(%rbp)
11 ; int a = 100;
12 d: c7 45 f8 64 00 00 00 movl $100, -8(%rbp)
13 ; int b = a % 128;
14 14: 8b 4d f8 movl -8(%rbp), %ecx
15 17: 89 45 f0 movl %eax, -16(%rbp)
16 1a: 89 c8 movl %ecx, %eax
17 1c: 99 cltd
18 1d: b9 80 00 00 00 movl $128, %ecx
19 22: f7 f9 idivl %ecx
20 24: 89 55 f4 movl %edx, -12(%rbp)
21 ; return 0;
22 27: 8b 4d f0 movl -16(%rbp), %ecx
23 2a: 89 c8 movl %ecx, %eax
24 2c: 5d popq %rbp
25 2d: c3 retq
结论:在第19行的地方,通过idivl %ecx指令,用eax寄存器(存的是100)里的值除以ecx寄存器(存的是128)里的值,并将余数存放在edx寄存器,商存放在eax寄存器。在第20行的地方,通过movl %edx, -12(%rbp)指令,将edx寄存器(存的是余数)放入变量b中。此外,从第19行的代码可以看出,当对128(2^8)进行取余时,编译器并未通过位运算的方式对取余操作进行优化。
指定优化选项为-O1时的汇编代码
1
2 test.o: file format Mach-O 64-bit x86-64
3
4 Disassembly of section __TEXT,__text:
5 _main:
6 ; int main(void) {
7 0: 55 pushq %rbp
8 1: 48 89 e5 movq %rsp, %rbp
9 ; return 0;
10 4: 31 c0 xorl %eax, %eax
11 6: 5d popq %rbp
12 7: c3 retq
结论:开启-O1编译优化选项后,main函数中的两条语句(int a = 100; int b = a % 128;)没有被编译成汇编代码,可能的原因是,那些被优化掉的代码对程序的运行结果没有任何影响,因此被编译器跳过了,这依然不是我们想要的,为了能够在汇编层面看到C++对取余运算做的优化,我们还需要将程序写的更复杂一些,以便能够绕过g++最基本的优化,同时也能看到对取余运算的优化。
3、实验三
假设现在有如下demo示例:
1 int b = 0;
2 int foo(int x) {
3 return x * x;
4 }
5 int main(void) {
6 int a = foo(10);
7 b = a % 128;
8 return 0;
9 }
指定优化选项为-O1时的汇编代码
1
2 test.o: file format Mach-O 64-bit x86-64
3
4 Disassembly of section __TEXT,__text:
5 __Z3fooi:
6 ; int foo(int x) {
7 0: 55 pushq %rbp
8 1: 48 89 e5 movq %rsp, %rbp
9 ; return x * x;
10 4: 0f af ff imull %edi, %edi
11 7: 89 f8 movl %edi, %eax
12 9: 5d popq %rbp
13 a: c3 retq
14 b: 0f 1f 44 00 00 nopl (%rax,%rax)
15
16 _main:
17 ; int main(void) {
18 10: 55 pushq %rbp
19 11: 48 89 e5 movq %rsp, %rbp
20 ; int a = foo(10);
21 14: bf 0a 00 00 00 movl $10, %edi
22 19: e8 00 00 00 00 callq 0 <_main+0xe>
23 ; b = a % 128;
24 1e: 89 c1 movl %eax, %ecx
25 20: c1 f9 1f sarl $31, %ecx
26 23: c1 e9 19 shrl $25, %ecx
27 26: 01 c1 addl %eax, %ecx
28 28: 83 e1 80 andl $-128, %ecx
29 2b: 29 c8 subl %ecx, %eax
30 2d: 89 05 00 00 00 00 movl %eax, (%rip)
31 ; return 0;
32 33: 31 c0 xorl %eax, %eax
33 35: 5d popq %rbp
34 36: c3 retq
结论:开启-O1编译优化选项后,可以看到当128作为除数进行取余运算时,g++通过位运算做了优化,涉及到的汇编代码及其作用如下表所示
行号 | 指令 | 作用 | 备注 |
---|---|---|---|
25 | |
将ecx寄存器中的数(被除数)算数右移31位,最高位补符号位,得到结果是,当被除数为正数时,ecx中存的是32个0,当被除数为负数时,ecx中存的是32个1。 | |
26 | |
将ecx寄存器中的数逻辑右移25位,最高位补0,结合第25行的逻辑,得到的结果是,当被除数为正数时,ecx中存的是32个0,当被除数为负数时,ecx中存的是25个0和7个1,即127。 | |
27 | |
将eax寄存器中的数(被除数)加上ecx寄存器中的数(0或127)放入ecx寄存器中,这样做的原因是,C++的取余运算在计算商值时,向0方向舍弃小数位,也就是说当被除数为负数时,商乘以除数的值要大于等于被除数。即,为了使第28行中的ecx & (-128)大于等于被除数,需要在第27中将ecx加上127。 | |
28 | |
将ecx寄存器中的数按位与-128,得到(ecx/128)*128,即商与除数的乘积,其中 (ecx/128) 向0方向舍弃小数位。 | |
29 | |
将eax寄存器中的数(被除数)减去ecx寄存器中的数放入eax寄存器中,即被除数减去商与除数的乘积,得到余数。 |
为了进一步说明上述汇编代码中的立即数25(32-7)、-128与demo中的128(2^7)有直接的关系,下面将demo中的128换成1024(2^10),然后再对比汇编代码的不同。
4、实验四
假设现在有如下demo示例:
1 int b = 0;
2 int foo(int x) {
3 return x * x;
4 }
5 int main(void) {
6 int a = foo(10);
7 b = a % 1024;
8 return 0;
9 }
指定优化选项为-O1时的汇编代码
1
2 test.o: file format Mach-O 64-bit x86-64
3
4 Disassembly of section __TEXT,__text:
5 __Z3fooi:
6 ; int foo(int x) {
7 0: 55 pushq %rbp
8 1: 48 89 e5 movq %rsp, %rbp
9 ; return x * x;
10 4: 0f af ff imull %edi, %edi
11 7: 89 f8 movl %edi, %eax
12 9: 5d popq %rbp
13 a: c3 retq
14 b: 0f 1f 44 00 00 nopl (%rax,%rax)
15
16 _main:
17 ; int main(void) {
18 10: 55 pushq %rbp
19 11: 48 89 e5 movq %rsp, %rbp
20 ; int a = foo(10);
21 14: bf 0a 00 00 00 movl $10, %edi
22 19: e8 00 00 00 00 callq 0 <_main+0xe>
23 ; b = a % 1024;
24 1e: 89 c1 movl %eax, %ecx
25 20: c1 f9 1f sarl $31, %ecx
26 23: c1 e9 16 shrl $22, %ecx
27 26: 01 c1 addl %eax, %ecx
28 28: 81 e1 00 fc ff ff andl $4294966272, %ecx
29 2e: 29 c8 subl %ecx, %eax
30 30: 89 05 00 00 00 00 movl %eax, (%rip)
31 ; return 0;
32 36: 31 c0 xorl %eax, %eax
33 38: 5d popq %rbp
34 39: c3 retq
结论:由上述汇编代码可知,当除数换成1024之
结论:由上述汇编代码可知,当除数换成1024之后,实验三中第26行的立即数25变成了22(32-10),第28行的立即数-128变成了4294966272(即-1024的补码),其他内容不变。由此可以看出,在C++程序进行编译时,若源码中出现了对2的幂进行取余的操作,且开启了O1优化选项,那么在随后生成的汇编代码中,是通过位运算实现取余操作的。不过,值得注意的是,在我们的源码中进行取余操作时,我们是通过立即数的形式指定了2的幂,那如果我们通过变量的形式指定2的幂(这可能是更常见的情况),结果会如何呢?
5、实验五
假设现在有如下demo示例:
1 int b = 0;
2 int foo(int x) {
3 return x * x;
4 }
5 int goo(int x) {
6 return 1 << x;
7 }
8 int main(void) {
9 int a = foo(10);
10 int c = goo(10);
11 b = a % c;
12 return 0;
13 }
指定优化选项为-O1时的汇编代码
1
2 test.o: file format Mach-O 64-bit x86-64
3
4 Disassembly of section __TEXT,__text:
5 __Z3fooi:
6 ; int foo(int x) {
7 0: 55 pushq %rbp
8 1: 48 89 e5 movq %rsp, %rbp
9 4: 89 7d fc movl %edi, -4(%rbp)
10 ; return x * x;
11 7: 8b 7d fc movl -4(%rbp), %edi
12 a: 0f af 7d fc imull -4(%rbp), %edi
13 e: 89 f8 movl %edi, %eax
14 10: 5d popq %rbp
15 11: c3 retq
16 12: 66 2e 0f 1f 84 00 00 00 00 00 nopw %cs:(%rax,%rax)
17 1c: 0f 1f 40 00 nopl (%rax)
18
19 __Z3gooi:
20 ; int goo(int x) {
21 20: 55 pushq %rbp
22 21: 48 89 e5 movq %rsp, %rbp
23 24: 89 7d fc movl %edi, -4(%rbp)
24 ; return 1 << x;
25 27: 8b 4d fc movl -4(%rbp), %ecx
26 2a: bf 01 00 00 00 movl $1, %edi
27 2f: d3 e7 shll %cl, %edi
28 31: 89 f8 movl %edi, %eax
29 33: 5d popq %rbp
30 34: c3 retq
31 35: 66 2e 0f 1f 84 00 00 00 00 00 nopw %cs:(%rax,%rax)
32 3f: 90 nop
33
34 _main:
35 ; int main(void) {
36 40: 55 pushq %rbp
37 41: 48 89 e5 movq %rsp, %rbp
38 44: 48 83 ec 10 subq $16, %rsp
39 48: c7 45 fc 00 00 00 00 movl $0, -4(%rbp)
40 ; int a = foo(10);
41 4f: bf 0a 00 00 00 movl $10, %edi
42 54: e8 00 00 00 00 callq 0 <_main+0x19>
43 59: 89 45 f8 movl %eax, -8(%rbp)
44 ; int c = goo(10);
45 5c: bf 0a 00 00 00 movl $10, %edi
46 61: e8 00 00 00 00 callq 0 <_main+0x26>
47 66: 31 ff xorl %edi, %edi
48 68: 89 45 f4 movl %eax, -12(%rbp)
49 ; b = a % c;
50 6b: 8b 45 f8 movl -8(%rbp), %eax
51 6e: 99 cltd
52 6f: f7 7d f4 idivl -12(%rbp)
53 72: 89 15 00 00 00 00 movl %edx, (%rip)
54 ; return 0;
55 78: 89 f8 movl %edi, %eax
56 7a: 48 83 c4 10 addq $16, %rsp
57 7e: 5d popq %rbp
58 7f: c3 retq
结论:从第52行的 idivl -12(%rbp)指令可以看出,当我们通过变量的形式指定2的幂时,开启-O1优化后,在得到的汇编代码中并没有通过位运算来优化取余操作。既然开启-O1优化选项后并没有得到我们想要的优化效果,那么可以尝试一下-O2优化选项。
6、实验六
假设现在有如下demo示例:
1 int b = 0;
2 int foo(int x) {
3 return x * x;
4 }
5 int goo(int x) {
6 return 1 << x;
7 }
8 int main(void) {
9 int a = foo(10);
10 int c = goo(10);
11 b = a % c;
12 return 0;
13 }
指定优化选项为-O2时的汇编代码
1
2 test.o: file format Mach-O 64-bit x86-64
3
4 Disassembly of section __TEXT,__text:
5 __Z3fooi:
6 ; int foo(int x) {
7 0: 55 pushq %rbp
8 1: 48 89 e5 movq %rsp, %rbp
9 ; return x * x;
10 4: 0f af ff imull %edi, %edi
11 7: 89 f8 movl %edi, %eax
12 9: 5d popq %rbp
13 a: c3 retq
14 b: 0f 1f 44 00 00 nopl (%rax,%rax)
15
16 __Z3gooi:
17 ; int goo(int x) {
18 10: 55 pushq %rbp
19 11: 48 89 e5 movq %rsp, %rbp
20 14: b8 01 00 00 00 movl $1, %eax
21 ; return 1 << x;
22 19: 89 f9 movl %edi, %ecx
23 1b: d3 e0 shll %cl, %eax
24 1d: 5d popq %rbp
25 1e: c3 retq
26 1f: 90 nop
27
28 _main:
29 ; int main(void) {
30 20: 55 pushq %rbp
31 21: 48 89 e5 movq %rsp, %rbp
32 ; b = a % c;
33 24: c7 05 fc ff ff ff 64 00 00 00 movl $100, -4(%rip)
34 ; return 0;
35 2e: 31 c0 xorl %eax, %eax
36 30: 5d popq %rbp
37 31: c3 retq
结论:从第33行的 movl $100, -4(%rip) 指令可以看出,开启-O2优化选项后,g++直接在编译阶段将 (x * x) % (1 << x)的结果(100)计算出来了,其中x=10。可能,这才是g++强大的优化能力。
7、参考文献
https://blog.csdn.net/attagain/article/details/18655485
https://blog.csdn.net/coder_panyy/article/details/73743722