简单说,对 Stream 的使用就是实现一个 filter-map-reduce 过程,产生一个最终结果,或者导致一个副作用(side effect)。
Stream在Java SE 8中非常重要,我们希望可以在JDK中尽可能广的使用Stream。我们为Collection提供了stream()和parallelStream(),以便把集合转化为流;此外数组可以通过Arrays.stream()被转化为流。
除此之外,Stream中还有一些静态工厂方法(以及相关的原始类型流实现),这些方法被用来创建流,例如Stream.of(),Stream.generate以及IntStream.range。其它的常用类型也提供了流相关的方法,例如String.chars,BufferedReader.lines,Pattern.splitAsStream,Random.ints和BitSet.stream。
下面提供最常见的几种构造 Stream 的样例。
// 构造流的几种常见方法
// 1. Individual values
Stream stream = Stream.of("a","b", "c");
// 2. Arrays
String [] strArray = new String[]{"a", "b", "c"};
stream = Stream.of(strArray);
stream = Arrays.stream(strArray);
// 3. Collections
List list =Arrays.asList(strArray);
stream = list.stream();
需要注意的是,对于基本数值型,目前有三种对应的包装类型 Stream:
IntStream、LongStream、DoubleStream。当然我们也可以用 Stream
Java8 中还没有提供其它数值型 Stream,因为这将导致扩增的内容较多。而常规的数值型聚合运算可以通过上面三种 Stream 进行。
// 数值流的构造
IntStream.of(new int[]{1, 2,3}).forEach(System.out::println);
IntStream.range(1,3).forEach(System.out::println);
IntStream.rangeClosed(1,3).forEach(System.out::println);
// 流转换为其它数据结构
// 1. Array
String[] strArray1 = stream.toArray(String[]::new);
// 2. Collection
List list1 =stream.collect(Collectors.toList());
List list2 =stream.collect(Collectors.toCollection(ArrayList::new));
Set set1 =stream.collect(Collectors.toSet());
Stack stack1 = stream.collect(Collectors.toCollection(Stack::new));
// 3. String
String str =stream.collect(Collectors.joining()).toString();
一个 Stream 只可以使用一次,上面的代码为了简洁而重复使用了数次。
接下来,当把一个数据结构包装成 Stream 后,就要开始对里面的元素进行各类操作了。常见的操作可以归类如下。
· Intermediate:
map (mapToInt, flatMap 等)、 filter、 distinct、 sorted、 peek、 limit、 skip、 parallel、 sequential、 unordered
map/flatMap
我们先来看 map。如果你熟悉 scala 这类函数式语言,对这个方法应该很了解,它的作用就是把 input Stream 的每一个元素,映射成 output Stream 的另外一个元素。
// 转换大写
List output =wordList.stream().
map(String::toUpperCase).
collect(Collectors.toList());
下面看一个完整示例:
package lambda;
import java.util.Arrays;
import java.util.List;
public class MapAndReduceTest {
// applying 12% VAT on each purchase
// Without lambda expressions:
List costBeforeTax = Arrays.asList(100, 200, 300, 400, 500);
public void applying(){
for (Integer cost : costBeforeTax) {
double price = cost + .12*cost;
System.out.print(price + " ");
}
}
// Applying 12% VAT on each purchase
// Old way:
public void total(){
double total = 0;
for (Integer cost : costBeforeTax) {
double price = cost + .12*cost;
total = total + price;
}
System.out.println("Total : " + total);
}
// With Lambda expression:
List costBeforeTax2 = Arrays.asList(100, 200, 300, 400, 500);
public void applying2(){
costBeforeTax2.stream().map((cost) -> cost + .12*cost)
.forEach(System.out::print);
}
public void total2(){
//reduce() 是将集合中所有值结合进一个,Reduce类似SQL语句中的sum(), avg() 或count()
double bill = costBeforeTax2.stream().map((cost) -> cost + .12*cost)
.reduce((sum, cost) -> sum + cost)
.get();
System.out.println("Total : " + bill);
}
public static void main(String[] args) {
MapAndReduceTest mr = new MapAndReduceTest();
mr.applying();
mr.total();
System.out.println("=========================================");
mr.applying2();
mr.total2();
}
}
/*Output:
112.0 224.0 336.0 448.0 560.0 Total : 1680.0
=========================================
112.0224.0336.0448.0560.0Total : 1680.0
* */
// 平方数
List nums =Arrays.asList(1, 2, 3, 4);
List squareNums =nums.stream().
map(n -> n * n).
collect(Collectors.toList());
这段代码生成一个整数 list 的平方数 {1, 4, 9, 16}。
从上面例子可以看出,map 生成的是个 1:1 映射,每个输入元素,都按照规则转换成为另外一个元素。还有一些场景,是一对多映射关系的,这时需要 flatMap。
// 一对多
Stream>inputStream = Stream.of(
Arrays.asList(1),
Arrays.asList(2, 3),
Arrays.asList(4, 5, 6)
);
Stream outputStream =inputStream.
flatMap((childList) ->childList.stream());
flatMap把 input Stream 中的层级结构扁平化,就是将最底层元素抽出来放到一起,最终 output 的新 Stream 里面已经没有 List 了,都是直接的数字。
filter
filter 对原始 Stream 进行某项测试,通过测试的元素被留下来生成一个新 Stream。
package lambda;
import java.util.Arrays;
import java.util.List;
import java.util.stream.Collectors;
public class FilterTest {
// Create a List with String more than 2 characters
List strList = Arrays.asList("Lambdas", "Default Method",
"Stream API", "Date and Time API");
/*Filtering是对大型Collection操作的一个通用操作,Stream提供filter()方法,
* 接受一个Predicate对象,意味着你能传送lambda表达式作为一个过滤逻辑进入这个方法:
*/
List filtered = strList.stream().filter(x -> x.length()> 12)
.collect(Collectors.toList());
public void display(){
System.out.printf("Original List : %s, \nfiltered list : %s %n",
strList, filtered);
}
public static void main(String[] args) {
FilterTest ft = new FilterTest();
ft.display();
}
}
// 留下偶数
Integer[] sixNums = {1, 2, 3, 4, 5, 6};
Integer[] evens =
Stream.of(sixNums).filter(n -> n%2 ==0).toArray(Integer[]::new);
经过条件“被 2 整除”的 filter,剩下的数字为 {2, 4, 6}。
// 把单词挑出来
List output =reader.lines().
flatMap(line ->Stream.of(line.split(REGEXP))).
filter(word -> word.length() > 0).
collect(Collectors.toList());
这段代码首先把每行的单词用 flatMap 整理到新的 Stream,然后保留长度不为 0 的,就是整篇文章中的全部单词了。
limit/skip
limit返回 Stream 的前面 n 个元素;skip 则是扔掉前 n 个元素(它是由一个叫 subStream 的方法改名而来)。
package lambda;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;
public class LimitAndSkipTest {
public void testLimitAndSkip() {
List persons = new ArrayList();
for (int i = 1; i <= 10000; i++) {
Person person = new Person(i, "name" + i);
persons.add(person);
}
List personList2 = persons.stream().map(Person::getName)
.limit(10).skip(3).collect(Collectors.toList());
System.out.println(personList2);
}
private class Person {
public int no;
private String name;
public Person(int no, String name) {
this.no = no;
this.name = name;
}
public String getName() {
System.out.println(name);
return name;
}
}
public void limitAndSortedTest1(){
List persons = new ArrayList();
for (int i = 1; i <= 5; i++) {
Person person = new Person(i, "name" + i);
persons.add(person);
}
List personList2 = persons.stream().sorted((p1, p2) ->
p1.getName().compareTo(p2.getName())).limit(2).collect(Collectors.toList());
System.out.println(personList2);
}
public void limitAndSortedTest2(){
List persons = new ArrayList();
for (int i = 1; i <= 5; i++) {
Person person = new Person(i, "name" + i);
persons.add(person);
}
List personList2 = persons.stream().limit(2).sorted((p1, p2) -> p1.getName().compareTo(p2.getName())).collect(Collectors.toList());
System.out.println(personList2);
}
public static void main(String[] args) {
LimitAndSkipTest ls = new LimitAndSkipTest();
ls.testLimitAndSkip();
System.out.println("==========");
ls.limitAndSortedTest1();
System.out.println("==========");
ls.limitAndSortedTest2();
}
}
/* Output
name1
name2
name3
name4
name5
name6
name7
name8
name9
name10
[name4, name5, name6, name7, name8, name9, name10]
* */
这是一个有 10,000 个元素的 Stream,但在 short-circuiting 操作 limit 和 skip 的作用下,管道中 map 操作指定的 getName() 方法的执行次数为 limit 所限定的 10 次,而最终返回结果在跳过前 3 个元素后只有后面 7 个返回。
有一种情况是 limit/skip 无法达到 short-circuiting 目的的,就是把它们放在 Stream 的排序操作后,原因跟 sorted 这个 intermediate 操作有关:此时系统并不知道 Stream 排序后的次序如何,所以 sorted 中的操作看上去就像完全没有被 limit 或者 skip 一样。
//limit 和 skip 对 sorted 后的运行次数无影响
List persons = new ArrayList();
for (int i = 1; i <= 5; i++) {
Person person = new Person(i, "name" + i);
persons.add(person);
}
List personList2 = persons.stream().sorted((p1, p2) ->
p1.getName().compareTo(p2.getName())).limit(2).collect(Collectors.toList());
System.out.println(personList2);
/*Output
name2
name1
name3
name2
name4
name3
name5
name4
[stream.StreamDW$Person@816f27d, stream.StreamDW$Person@87aac27]
**/
上面的示例对代码做了微调,首先对 5 个元素的 Stream 排序,然后进行 limit 操作。
最后有一点需要注意的是,对一个 parallel 的 Steam 管道来说,如果其元素是有序的,那么 limit 操作的成本会比较大,因为它的返回对象必须是前 n 个也有一样次序的元素。取而代之的策略是取消元素间的次序,或者不要用 parallel Stream。
常见流的Terminal操作有:forEach、 forEachOrdered、 toArray、 reduce、 collect、 min、 max、 count、 anyMatch、 allMatch、 noneMatch、 findFirst、 findAny、 iterator
forEach
forEach方法接收一个 Lambda 表达式,然后在 Stream 的每一个元素上执行该表达式。
//打印姓名(forEach 和 pre-java8 的对比)
// Java 8
roster.stream()
.filter(p -> p.getGender() ==Person.Sex.MALE)
.forEach(p ->System.out.println(p.getName()));
// Pre-Java 8
for (Person p : roster) {
if(p.getGender() == Person.Sex.MALE) {
System.out.println(p.getName());
}
}
对一个人员集合遍历,找出男性并打印姓名。可以看出来,forEach 是为 Lambda 而设计的,保持了最紧凑的风格。而且 Lambda 表达式本身是可以重用的,非常方便。当需要为多核系统优化时,可以parallelStream().forEach(),只是此时原有元素的次序没法保证,并行的情况下将改变串行时操作的行为,此时 forEach 本身的实现不需要调整,而 Java8 以前的 for 循环 code 可能需要加入额外的多线程逻辑。
但一般认为,forEach 和常规 for 循环的差异不涉及到性能,它们仅仅是函数式风格与传统 Java 风格的差别。
另外一点需要注意,forEach 是 terminal 操作,因此它执行后,Stream 的元素就被“消费”掉了,你无法对一个 Stream 进行两次 terminal 运算。下面的代码是错误的:
相反,具有相似功能的 intermediate 操作 peek 可以达到上述目的。如下是出现在该 api javadoc 上的一个示例。
package lambda;
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.Stream;
public class PeekTest {
public static void main(String[] args) {
List list = Stream.of("one", "two", "three", "four")
.filter(e -> e.length() > 3)
.peek(e -> System.out.println("Filtered value: " + e))
.map(String::toUpperCase)
.peek(e -> System.out.println("Mapped value: " + e))
.collect(Collectors.toList());
System.out.println(list);
}
}
/*Output:
Filtered value: three
Mapped value: THREE
Filtered value: four
Mapped value: FOUR
[THREE, FOUR]
*/
forEach不能修改自己包含的本地变量值,也不能用 break/return 之类的关键字提前结束循环。
// Optional 的两个用例
String strA = " abcd ", strB = null;
print(strA);
print("");
print(strB);
getLength(strA);
getLength("");
getLength(strB);
public static void print(String text) {
// Java 8
Optional.ofNullable(text).ifPresent(System.out::println);
// Pre-Java 8
if (text != null) {
System.out.println(text);
}
}
public static int getLength(String text) {
// Java 8
return Optional.ofNullable(text).map(String::length).orElse(-1);
// Pre-Java 8
// return if (text != null) ? text.length() : -1;
};
在更复杂的 if (xx != null) 的情况中,使用 Optional 代码的可读性更好,而且它提供的是编译时检查,能极大的降低 NPE 这种 Runtime Exception 对程序的影响,或者迫使程序员更早的在编码阶段处理空值问题,而不是留到运行时再发现和调试。
Stream中的 findAny、max/min、reduce 等方法等返回 Optional 值。还有例如 IntStream.average() 返回 OptionalDouble 等等。
reduce
这个方法的主要作用是把 Stream 元素组合起来。它提供一个起始值(种子),然后依照运算规则(BinaryOperator),和前面 Stream 的第一个、第二个、第 n 个元素组合。从这个意义上说,字符串拼接、数值的 sum、min、max、average 都是特殊的 reduce。例如 Stream 的 sum 就相当于
Integersum = integers.reduce(0, (a, b) -> a+b); 或
Integersum = integers.reduce(0, Integer::sum);
也有没有起始值的情况,这时会把 Stream 的前面两个元素组合起来,返回的是 Optional。
//reduce 的用例
// 字符串连接,concat = "ABCD"
String concat = Stream.of("A", "B", "C", "D").reduce("", String::concat);
// 求最小值,minValue = -3.0
double minValue = Stream.of(-1.5, 1.0, -3.0, -2.0).reduce(Double.MAX_VALUE, Double::min);
// 求和,sumValue = 10, 有起始值
int sumValue = Stream.of(1, 2, 3, 4).reduce(0, Integer::sum);
// 求和,sumValue = 10, 无起始值
sumValue = Stream.of(1, 2, 3, 4).reduce(Integer::sum).get();
// 过滤,字符串连接,concat = "ace"
concat = Stream.of("a", "B", "c", "D", "e", "F").
filter(x -> x.compareTo("Z") > 0).
reduce("", String::concat);
上面代码例如第一个示例的 reduce(),第一个参数(空白字符)即为起始值,第二个参数(String::concat)为 BinaryOperator。这类有起始值的 reduce() 都返回具体的对象。而对于第四个示例没有起始值的 reduce(),由于可能没有足够的元素,返回的是 Optional,请留意这个区别。
sorted
对 Stream 的排序通过 sorted 进行,它比数组的排序更强之处在于你可以首先对 Stream 进行各类 map、filter、limit、skip 甚至 distinct 来减少元素数量后,再排序,这能帮助程序明显缩短执行时间。我们对代码 14 进行优化:
// 优化:排序前进行 limit 和 skip
List persons = new ArrayList();
for (int i = 1; i <= 5; i++) {
Person person = new Person(i, "name" + i);
persons.add(person);
}
List personList2 = persons.stream().limit(2).sorted((p1, p2) -> p1.getName().compareTo(p2.getName())).collect(Collectors.toList());
System.out.println(personList2);
/*Output:
name2
name1
[stream.StreamDW$Person@6ce253f1, stream.StreamDW$Person@53d8d10a]
**/
当然,这种优化是有 business logic 上的局限性的:即不要求排序后再取值。
min/max/distinct
min和 max 的功能也可以通过对 Stream 元素先排序,再 findFirst 来实现,但前者的性能会更好,为 O(n),而 sorted 的成本是 O(n log n)。同时它们作为特殊的 reduce 方法被独立出来也是因为求最大最小值是很常见的操作。
// 找出最长一行的长度
BufferedReader br = new BufferedReader(newFileReader("c:\\SUService.log"));
int longest = br.lines().
mapToInt(String::length).
max().
getAsInt();
br.close();
System.out.println(longest);
下面的例子则使用 distinct 来找出不重复的单词。
// 找出全文的单词,转小写,并排序
List words = br.lines().
flatMap(line -> Stream.of(line.split(""))).
filter(word -> word.length() > 0).
map(String::toLowerCase).
distinct().
sorted().
collect(Collectors.toList());
br.close();
System.out.println(words);
· Short-circuiting:
anyMatch、 allMatch、 noneMatch、 findFirst、 findAny、 limit
我们下面看一下 Stream 的比较典型用法。
Match
Stream 有三个 match 方法,从语义上说:
· allMatch:Stream 中全部元素符合传入的 predicate,返回 true
· anyMatch:Stream 中只要有一个元素符合传入的 predicate,返回 true
· noneMatch:Stream 中没有一个元素符合传入的 predicate,返回 true
它们都不是要遍历全部元素才能返回结果。例如 allMatch 只要一个元素不满足条件,就 skip 剩下的所有元素,返回 false。
package lambda;
import java.util.ArrayList;
import java.util.List;
public class MatchTest {
public void matchTest(){
List persons = new ArrayList();
persons.add(new Person(1, "name" + 1, 10));
persons.add(new Person(2, "name" + 2, 21));
persons.add(new Person(3, "name" + 3, 34));
persons.add(new Person(4, "name" + 4, 6));
persons.add(new Person(5, "name" + 5, 55));
boolean isAllAdult = persons.stream().
allMatch(p -> p.getAge() > 18);
System.out.println("All are adult? " + isAllAdult);
boolean isThereAnyChild = persons.stream().
anyMatch(p -> p.getAge() < 12);
System.out.println("Any child? " + isThereAnyChild);
}
private class Person {
public int no;
private int age;
private String name;
public Person(int no, String name, int age) {
this.no = no;
this.name = name;
this.age = age;
}
public int getAge(){
return age;
}
}
public static void main(String[] args) {
new MatchTest().matchTest();
}
}
findFirst
这是一个 termimal 兼 short-circuiting 操作,它总是返回 Stream 的第一个元素,或者空。
这里比较重点的是它的返回值类型:Optional。这也是一个模仿 Scala 语言中的概念,作为一个容器,它可能含有某值,或者不包含。使用它的目的是尽可能避免 NullPointerException。
Stream.generate
通过实现 Supplier 接口,你可以自己来控制流的生成。这种情形通常用于随机数、常量的 Stream,或者需要前后元素间维持着某种状态信息的 Stream。把 Supplier 实例传递给 Stream.generate() 生成的 Stream,默认是串行(相对 parallel 而言)但无序的(相对 ordered 而言)。由于它是无限的,在管道中,必须利用 limit 之类的操作限制 Stream 大小。
Stream.generate()还接受自己实现的 Supplier。例如在构造海量测试数据的时候,用某种自动的规则给每一个变量赋值;或者依据公式计算 Stream 的每个元素值。这些都是维持状态信息的情形。
Stream.iterate
iterate跟 reduce 操作很像,接受一个种子值,和一个 UnaryOperator(例如 f)。然后种子值成为 Stream 的第一个元素,f(seed) 为第二个,f(f(seed)) 第三个,以此类推。
代码 24. 生成一个等差数列
Stream.iterate(0, n -> n + 3).limit(10). forEach(x -> System.out.print(x + " "));.
输出结果:
0 3 6 9 12 15 18 21 24 27
与 Stream.generate 相仿,在 iterate 时候管道必须有 limit 这样的操作来限制Stream 大小。
用 Collectors 来进行 reduction 操作
java.util.stream.Collectors 类的主要作用就是辅助进行各类有用的 reduction 操作,例如转变输出为 Collection,把 Stream 元素进行归组。
groupingBy/partitioningBy
// 按照年龄归组
Map> personGroups = Stream.generate(new PersonSupplier()).
limit(100).
collect(Collectors.groupingBy(Person::getAge));
Iterator it = personGroups.entrySet().iterator();
while (it.hasNext()) {
Map.Entry> persons = (Map.Entry) it.next();
System.out.println("Age " + persons.getKey() + " = " + persons.getValue().size());
}
上面的 code,首先生成 100 人的信息,然后按照年龄归组,相同年龄的人放到同一个 list 中,可以看到如下的输出:
Age 0 = 2
Age 1 = 2
Age 5 = 2
Age 8 = 1
Age 9 = 1
Age 11 = 2
……
在使用条件“年龄小于 18”进行分组后可以看到,不到 18 岁的未成年人是一组,成年人是另外一组。partitioningBy 其实是一种特殊的 groupingBy,它依照条件测试的是否两种结果来构造返回的数据结构,get(true) 和 get(false) 能即为全部的元素对象。
// 按照未成年人和成年人归组
Map> children = Stream.generate(new PersonSupplier()).
limit(100).
collect(Collectors.partitioningBy(p -> p.getAge() < 18));
System.out.println("Children number: " + children.get(true).size());
System.out.println("Adult number: " + children.get(false).size());
/*Output
Children number: 23
Adult number: 77
*/
总之,Stream 的特性可以归纳为:
· 不是数据结构
· 它没有内部存储,它只是用操作管道从 source(数据结构、数组、generator function、IO channel)抓取数据。
· 它也绝不修改自己所封装的底层数据结构的数据。例如 Stream 的 filter 操作会产生一个不包含被过滤元素的新 Stream,而不是从 source 删除那些元素。
· 所有 Stream 的操作必须以 lambda 表达式为参数
· 不支持索引访问
· 你可以请求第一个元素,但无法请求第二个,第三个,或最后一个。不过请参阅下一项。
· 很容易生成数组或者 List
· 惰性化
· 很多 Stream 操作是向后延迟的,一直到它弄清楚了最后需要多少数据才会开始。
· Intermediate 操作永远是惰性化的。
· 并行能力
· 当一个 Stream 是并行化的,就不需要再写多线程代码,所有对它的操作会自动并行进行的。
· 可以是无限的
o 集合有固定大小,Stream 则不必。limit(n) 和 findFirst() 这类的 short-circuiting 操作可以对无限的 Stream 进行运算并很快完成。