spark sql on hive笔记一

阅读更多
Spark sql on Hive非常方便,通过共享读取hive的元数据,我们可以直接使用spark sql访问hive的库和表,做更快的OLAP的分析。

spark 如果想直接能集成sql,最好自己编译下源码:

切换scala的版本为新版本
dev/change-scala-version.sh 2.11

编译支持hive
mvn -Pyarn -Phive  -Phive-thriftserver -Phadoop-2.7.3 -Dscala-2.11 -DskipTests clean package

注意,spark sql 可以直接在Linux上使用,像执行hive命令一样,进入交互式终端,进行即席查询,进入spark-sql交互式终端命令,并指定以yarn的模式运行:

spark/bin/spark-sql  --master yarn
本次使用的spark2.0.2,进入交互式终端之后,可以进行任意的查询分析,但本文的笔记例子,不是基于终端的spark sql分析,而是在Scala中使用spark sql on hive,在编程语言里面使用spark sql on hive 灵活性大大提供,能做更多的事情,比如说分析完的结果存储到MySQL,Hbase或者Redis里面,或者分析的过程,需要外部存储的一些数据等等。

开发程序是在IDEA里面写的,项目风格是Java+scala混搭采用maven管理,注意不是全scala项目,没有用sbt管理,sbt的国内下载非常慢,能翻网的同学可以尝试一下。

功能: 使用spark sql读取hive的数据,然后根据某个字段分组,并收集分组结果,然后存储到redis里面。

def main(args: Array[String]): Unit = {
    
    val t0=System.nanoTime();//开始时间
    val spark=SparkSession
       .builder()
        .appName("spark on sql hive  ")
       .enableHiveSupport().getOrCreate();//激活hive支持

    
    import spark.implicits._
    import spark.sql
    sql(" use db")//切换db
    //注意,collect_set 可以收集分组结果
    val ds=sql("select q_id, collect_set(kp_id) as ids from ods_q_quest_kp_rel where kp_id!=0  group by q_id");
    ds.cache();//cache起来,便于后续使用
    println("size:",ds.collect().length)//打印长度
    ds.select("q_id","ids").collect().foreach (
      t =>
      {
        val key=t.getAs[String]("q_id");//获取上面的列映射
        val value=t.getAs[Seq[String]]("ids").mkString(",");//获取上面的分组集合
        //insert redis
      }
    )
    val t1=System.nanoTime();
    
    println("insert redis ok! Elapsed time: " + (t1 - t0)/1000/1000 + "ms")
    //停止
    spark.stop();

  }


 
有什么问题可以扫码关注微信公众号:我是攻城师(woshigcs),在后台留言咨询。
技术债不能欠,健康债更不能欠, 求道之路,与君同行。

spark sql on hive笔记一_第1张图片

你可能感兴趣的:(spark,sql,hive)