tf.contrib.rnn

  • Class tf.contrib.rnn.BasicLSTMCell
  • Class tf.nn.rnn_cell.BasicLSTMCell
  • 其实两个是等价的,只是版本的问题,表示定义一个LSTM结构,所使用的变量会自动进行声明。

Args:

  • num_units: int, The number of units in the LSTM cell.神经元数量
  • forget_bias: float, The bias added to forget gates (see above). Must set to 0.0 manually when restoring from CudnnLSTM-trained checkpoints.  遗忘的偏置是0-1的数,1全记得,0全忘记
  • state_is_tuple: If True, accepted and returned states are 2-tuples of the c_state and m_state. If False, they are concatenated along the column axis. The latter behavior will soon be deprecated.最好是true,返回元祖。
  • activation: Activation function of the inner states. Default: tanh.    激活函数,默认tanh
  • reuse: (optional) Python boolean describing whether to reuse variables in an existing scope. If not True, and the existing scope already has the given variables, an error is raised.    重使用已存在的变量
  • name: String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases.

    When restoring from CudnnLSTM-trained checkpoints, must use CudnnCompatibleLSTMCell instead.

 

  • tf.contrib.rnn.MultiRNNCell()
  • 表示使用MultiRNNCell类实现深层循环网络中每一个时刻的前向传播。

你可能感兴趣的:(随笔)