- Python 数据分析与可视化:从基础到进阶的技术实现与优化策略
女码农的重启
python数据分析开发语言
数据分析与可视化是数据科学领域的核心技能,Python凭借其丰富的库生态和灵活的编程范式,成为该领域的首选工具。本文将系统讲解Python数据分析与可视化的技术栈实现,从基础操作到性能优化,结合实战场景提供可复用的解决方案。数据分析核心库技术解析Pandas数据处理引擎原理Pandas作为数据分析的基石,其核心优势在于基于NumPy的矢量运算和高效的内存管理。与Excel的单元格级操作不同,Pan
- Python - 数据分析三剑客之Pandas
MinggeQingchun
PythonPythonPandas
阅读前可参考NumPy文章https://blog.csdn.net/MinggeQingchun/article/details/148253682https://blog.csdn.net/MinggeQingchun/article/details/148253682Pandas是Python中一个强大的开源数据分析库,专门用于处理结构化数据(如表格、时间序列等),其核心数据结构为Seri
- Python的科学计算库NumPy(一)
linlin_1998
pythonnumpy开发语言
NumPy(NumericalPython)是Python中最基础、最重要的科学计算库之一,提供了高性能的多维数组(ndarray)对象和大量数学函数,是许多数据科学、机器学习库(如Pandas、SciPy、TensorFlow等)的基础依赖。1.创建一个numpy里面的一维数组importnumpyasnp###通过array方法创建一个ndarrayarray1=np.array([1,2,3
- NumPy-@运算符详解
GG不是gg
numpynumpy
NumPy-@运算符详解一、@运算符的起源与设计目标1.从数学到代码:符号的统一2.设计目标二、@运算符的核心语法与运算规则1.基础用法:二维矩阵乘法2.一维向量的矩阵语义3.高维数组:批次矩阵运算4.广播机制:灵活的形状匹配三、@运算符与其他乘法方式的核心区别1.对比`np.dot()`2.对比元素级乘法`*`3.对比`np.matrix`的`*`运算符四、典型应用场景:从基础到高阶1.深度学习
- 使用tensorflow的多项式回归的例子(二)
lishaoan77
tensorflowtensorflow回归人工智能多项式回归
例2importtensorflowastfimportnumpyasnpimportmatplotlib.pyplotaspltplt.style.use('default')#importtensorflow.contrib.eagerastfe#fromgoogle.colabimportfiles#tf.enable_eager_execution()x=np.arange(0,5,0.1
- 使用tensorflow的线性回归的例子(七)
lishaoan77
tensorflowtensorflow线性回归人工智能
L1与L2损失这个脚本展示如何用TensorFlow求解线性回归。在算法的收敛性中,理解损失函数的影响是很重要的。这里我们展示L1和L2损失函数是如何影响线性回归的收敛性的。我们使用iris数据集,但是我们将改变损失函数和学习速率来看收敛性的改变。importmatplotlib.pyplotaspltimportnumpyasnpimporttensorflowastffromsklearnim
- 使用 Python 制作华夫饼图进行同类型指标比较
追逐程序梦想者
pythonmatplotlib开发语言
使用Python制作华夫饼图进行同类型指标比较华夫饼图(WaffleChart)是一种用于展示数据比例的可视化方式。与传统的饼图相比,华夫饼图更加直观地展示了不同部分的占比情况。在同类型指标的比较中,华夫饼图也是一种非常有用的工具。在Python中,我们可以使用matplotlib库来制作华夫饼图。下面是一个简单的例子:importmatplotlib.pyplotaspltimportnumpy
- 【零基础学AI】第31讲:目标检测 - YOLO算法
1989
0基础学AI人工智能目标检测YOLOrnnlstmtensorflow
本节课你将学到YOLO算法的核心思想和工作原理如何使用YOLO进行物体检测构建一个简单的物体检测系统开始之前环境要求Python3.8+需要安装的包:opencv-python,numpy,matplotlib硬件要求:推荐使用GPU(非必须)前置知识基本Python编程能力了解卷积神经网络(CNN)的基本概念(第24讲内容)核心概念什么是目标检测?目标检测就像教计算机"看"图片中的物体。它不仅要
- 【数据可视化】在 Python 中使用 Matplotlib 进行数据可视化
干了这一碗BUG
pythonmatplotlib信息可视化数据可视化
Matplotlib是一个广泛使用的Python库,用于创建静态、动画和交互式数据可视化。它建立在NumPy之上,能够轻松处理大型数据集,以创建各种类型的图表,如折线图、柱状图、散点图等。这些可视化通过图表清晰地展示数据,帮助我们更好地理解数据。在本文中,我们将了解如何在Matplotlib中创建不同类型的图表并对其进行自定义。安装用于数据可视化的Matplotlib要安装Matplotlib,我
- 机器学习-K近邻算法
shy_snow
python机器学习机器学习近邻算法人工智能
k-近邻分类算法,即物以类聚的思想,通过已知分类中的点和未知分类的点距离最近的前k个点的分类来预测未知点的分类。kNN.pyfromnumpyimport*importoperatordefcreateDataSet():group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])labels=['A','A','B','B']returngroup,label
- Python数据分析案例|从模拟数据到可视化:零售门店客流量差异分析全流程
1.依赖库导入importmatplotlib.pyplotaspltimportnumpyasnpimportpandasaspdfrommatplotlibimportfont_managerfromdatetimeimportdatetimematplotlib.pyplot:用于绘制图表。numpy:numpy:pandas:虽然代码中未font_manager:设置datetime:生成
- 【图像处理基石】如何检测到画面中的ppt并对其进行增强?
1.入门版ppt检测增强工具我们介绍一个使用Python进行PPT检测并校正画面的实现方案。这个方案主要利用OpenCV进行图像处理,通过边缘检测和透视变换技术来识别并校正PPT画面。importcv2importnumpyasnpfromPILimportImageimportmatplotlib.pyplotaspltclassPPTDetector:def__init__(self):#初始
- 【零基础学AI】第30讲:生成对抗网络(GAN)实战 - 手写数字生成
1989
0基础学AI人工智能生成对抗网络神经网络python机器学习近邻算法深度学习
本节课你将学到GAN的基本原理和工作机制使用PyTorch构建生成器和判别器DCGAN架构实现技巧训练GAN模型的实用技巧开始之前环境要求Python3.8+需要安装的包:pipinstalltorchtorchvisionmatplotlibnumpyGPU推荐(可大幅加速训练)前置知识第21讲TensorFlow基础第23讲神经网络原理基本PyTorch使用经验核心概念什么是GAN?GAN就像
- 6.kaggle实战之房价预测
温柔济沧海
深度学习神经网络人工智能python深度学习
importhashlibimportosimporttarfileimportzipfileimportrequestsimportnumpyasnpimportpandasaspdimporttorchimportnumpyasnpfromtorchimportnnimportmatplotlib.pyplotaspltfromtorch.utils.dataimportDataLoader,
- 英伟达终为 CUDA 添加原生 Python 支持,他有什么目的?
朱卫军 AI
python开发语言
CUDA原来只支持C/C++/Fortran,在2025的CES上宣布支持原生Python其实是不得已而为之,一方面现在Python的AI开发者数量过于庞大,达到数千万级别,而CUDA仅几百万,CUDA想扩大自己的用户圈子,只能拉Python入伙。另一方面,Python生态的计算库实在太强大,比如numpy,几乎垄断了数组计算,还有像scipy、keras等,已经成为机器学习的主流工具,CUDA必
- python序列化任意结构到dict
YoungHong1992
python开发语言
defserialize(obj:Any)->Any:"""因为Param没有序列化的接口,无法直接转为dict或json,因此编写该函数,把Param转为dict"""ifisinstance(obj,np.ndarray):returnobj.tolist()#将numpy.ndarray转换为列表elifisinstance(obj,(int,float,str,bool)):#基本数据类型
- macOS运行python程序遇libiomp5.dylib库冲突错误解决方案
screenCui
macospython开发语言
用途说明在macOS系统运行某些涉及OpenMP或多线程的Python程序(如PyTorch、NumPy等科学计算库)时,可能会出现libiomp5.dylib库冲突的错误。设置os.environ['KMP_DUPLICATE_LIB_OK']='True'允许系统加载重复的动态链接库,临时解决冲突问题。典型错误场景错误信息通常包含以下内容:OMP:Error#15:Initializingli
- 【零基础学AI】第33讲:强化学习基础 - 游戏AI智能体
1989
0基础学AI人工智能游戏transformer分类深度学习神经网络
本节课你将学到理解强化学习的基本概念和框架掌握Q-learning算法原理使用Python实现贪吃蛇游戏AI训练能够自主玩游戏的智能体开始之前环境要求Python3.8+PyTorch2.0+Gymnasium(原OpenAIGym)NumPyMatplotlib推荐使用JupyterNotebook进行实验前置知识Python基础编程(第1-8讲)基本数学概念(函数、导数)神经网络基础(第23讲
- 深度学习-Tensor
Tensor张量:与numpy中的ndarray不同之处:tensor可以在GPU或其他专用硬件上运行,以加速计算。一、Tensor初始化1.直接从数据中创建data=[[1,2],[3,4]]x_data=torch.tensor(data)2.从numpy数组创建np_array=np.array(data)x_np=torch.from_numpy(np_array)3.从另一个Tensor
- NumPy-随机数生成详解
GG不是gg
numpynumpy
NumPy-随机数生成详解一、随机数生成的基础:伪随机数与种子1.伪随机数的本质2.种子的设置:确保结果可复现二、常用随机数生成函数1.均匀分布随机数2.正态分布随机数3.整数随机数4.其他常用分布三、随机数生成的进阶操作1.随机排列与洗牌2.控制随机数的维度与形状四、随机数生成的应用场景1.数据增强2.蒙特卡洛模拟3.随机初始化参数五、注意事项NumPy作为Python数值计算的核心库,提供了功
- 创意 Python 爱心代码
在编程的世界里,我们不仅可以解决复杂的问题,还能用代码表达情感。今天,我们来分享几段有趣的Python代码,通过绘制爱心图案,展示Python的创意与技术魅力。1.使用Matplotlib画爱心importnumpyasnpimportmatplotlib.pyplotasplt#生成心形曲线的数据t=np.linspace(0,2*np.pi,1000)x=16*np.sin(t)**3y=13
- Python入门300行代码
#注:在python中需要注意代码之间的缩进,通常以一个tab的距离表示隶属关系#1、利用import语句进行导入模块,用逗号分隔可以导入多个包importosimportmath,copy,random,time#2、利用from…import…进行导入fromcollectionsimportCounter#3、利用as关键字重命名包名,以后再使用就可以直接用np了importnumpyasn
- python 枚举
repinkply
#python开发语言
一、枚举存在的意义枚举存在的意义是它的标签,而不是他背后的数值。每个类中枚举值是独立无二的,枚举值是不能重复的每个枚举类必须继承自EnumPython中,枚举实际上是一个类fromenumimportEnumclassVIP(Enum):YELLOW=1GREEN=2BLACK=3RED=4#如果VIP是一般的普通类的话,那么VIP.YELLOW肯定是1,而不是VIP.YELLOWprint(VI
- NumPy:科学计算的超能引擎[特殊字符](深入剖析+实战技巧)
码海漫游者8
numpy其他
文章目录为什么NumPy是Python科学计算的绝对核心?三维痛点直击ndarray:NumPy的核武器剖析内存布局揭秘(超级重要‼️)维度操作黑科技广播机制(Broadcasting)性能屠杀现场️高级技巧武装包️内存映射大文件爱因斯坦求和约定结构化数组真实世界应用场景图像处理机器学习数据预处理踩坑预警⚠️视图vs副本整数溢出性能压榨终极指南避免复制四法则终极加速方案你知道吗?就在你刷短视频的几
- Python 用 NumPy 进行矩阵分解
Python用NumPy进行矩阵分解关键词:NumPy,矩阵分解,线性代数,奇异值分解,QR分解,LU分解,特征值分解摘要:本文将深入探讨使用NumPy进行矩阵分解的各种技术。我们将从基础的线性代数概念出发,详细讲解五种核心矩阵分解方法:LU分解、QR分解、奇异值分解(SVD)、特征值分解和Cholesky分解。每种方法都将配有数学原理说明、NumPy实现代码和实际应用案例。文章还将介绍矩阵分解在
- opencv初步学习——图像处理2
这一部分主要讲解如何初步地创建一个图像,以及彩色图像我们的一些基本处理方法一、创建一个灰度图像1-1、zeros()函数[NumPy库]要用到这一个函数,首先我们需要调用我们的NumPy库,这一个函数的作用是可以帮助我们生成一个元素值都是0的二维数组,如果我们把这些数据放到一张图片里面去,那么就对应着我们的一个黑色图像。当然我们也可以通过修改数组中的数字大小来改变图像的颜色(但还是灰度图像)(1)
- 【机器学习笔记 Ⅱ】4 神经网络中的推理
推理(Inference)是神经网络在训练完成后利用学到的参数对新数据进行预测的过程。与训练阶段不同,推理阶段不计算梯度也不更新权重,仅执行前向传播。以下是其实现原理和代码示例的完整解析:1.推理的核心步骤加载训练好的模型参数(权重和偏置)。前向传播:输入数据逐层计算,得到输出。后处理:根据任务类型解析输出(如分类取概率最大值,回归直接输出)。2.代码实现(Python+NumPy)(1)定义模型
- 【零基础学AI】第27讲:注意力机制(Attention) - 机器翻译实战
1989
0基础学AI人工智能机器翻译自然语言处理pythontensorflow机器学习神经网络
本节课你将学到理解注意力机制的核心思想掌握注意力计算的数学原理实现基于注意力机制的Seq2Seq模型构建英语到法语的神经翻译系统开始之前环境要求Python3.8+需要安装的包:tensorflow==2.8.0numpy==1.21.0matplotlib==3.4.0pandas==1.3.0前置知识RNN/LSTM原理(第26讲)序列数据处理(第26讲)自然语言处理基础(第14讲)核心概念为
- 两个场景的车辆相似度评估并画图(弗雷歇距离)
疑问:是否有必要normalize?(待解决)importmathimportnumpyasnpimportpandasaspdimporttorchfrommatplotlibimportpyplotaspltfromshapesimilarityimportshape_similarity,procrustes_normalize_curve,find_procrustes_rotation_
- Aletheia 情感智能模型:完整实现
Aletheia情感智能模型,整合所有核心模块并解决之前指出的问题。这个实现包含完整的神经动力学系统、多模态情感融合、伦理约束场和量子意识接口。importnumpyasnpimportmatplotlib.pyplotaspltfromscipy.integrateimportodeintfromsklearn.decompositionimportPCAimporttorchimporttor
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri