阅读更多
一,flume配置
# Name the components on this agent
a1.sources = tailsource-1
a1.sinks = remotesink
a1.channels = memoryChnanel-1
# Describe/configure the source
a1.sources.tailsource-1.type = exec
a1.sources.tailsource-1.command = tail -F /var/log/test/raw_data.txt
a1.sources.tailsource-1.channels = memoryChnanel-1
# Describe the sink
a1.sinks.k1.type = logger
# Use a channel which buffers events in memory
a1.channels.memoryChnanel-1.type = memory
a1.channels.memoryChnanel-1.keep-alive = 10
a1.channels.memoryChnanel-1.capacity = 100000
a1.channels.memoryChnanel-1.transactionCapacity = 100000
# Bind the source and sink to the channel
a1.sinks.remotesink.type = avro
a1.sinks.remotesink.hostname = 172.18.203.137
a1.sinks.remotesink.port = 9999
a1.sinks.remotesink.channel = memoryChnanel-1
#agent section
producer.sources = s
producer.channels = c
producer.sinks = r
#source section
producer.sources.s.type = avro
producer.sources.s.bind = 172.18.203.137
producer.sources.s.port = 9999
producer.sources.s.channels = c
# Each sink's type must be defined
producer.sinks.r.type = org.apache.flume.sink.kafka.KafkaSink
producer.sinks.r.topic = mytopic
producer.sinks.r.brokerList = master1:9092,master2:9092,slave2:9092
producer.sinks.r.requiredAcks = 1
producer.sinks.r.batchSize = 20
producer.sinks.r.channel = c1
#Specify the channel the sink should use
producer.sinks.r.channel = c
# Each channel's type is defined.
producer.channels.c.type = org.apache.flume.channel.kafka.KafkaChannel
producer.channels.c.capacity = 10000
producer.channels.c.transactionCapacity = 1000
producer.channels.c.brokerList=master1:9092,master2:9092,slave2:9092
producer.channels.c.topic=channel1
producer.channels.c.zookeeperConnect=master2:2181,slave2:2181,slave4:2181
二, Spark代码
import kafka.serializer.StringDecoder
import org.apache.log4j.{Level, Logger}
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}
/**
* Author: david
* Date : 3/7/17
*/
object StreamingDataTest {
def main(args: Array[String]): Unit = {
Logger.getLogger("org.apache.spark").setLevel(Level.WARN);
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.ERROR);
val conf = new SparkConf().setAppName("StreamingDataTest").setMaster("local[4]")
val sc = new SparkContext(conf)
val ssc = new StreamingContext(sc, Seconds(1))
// Kafka的topic
val topics = Set("mytopic")
//kafka brokers列表
val brokers = "master1:9092,master2:9092,slave3:9092"
//kafka查询参数
val kafkaParams = Map[String, String](
"metadata.broker.list" -> brokers, "serializer.class" -> "kafka.serializer.StringEncoder")
//创建direct stream
val kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)
//kafkaStream这个tuple的第二部分为接收kafka topic里的文本流
val rawDStream = kafkaStream.flatMap(_._2.split("\\s+")).map((_, 1))
val resDStream = rawDStream.reduceByKeyAndWindow(
(v1: Int, v2: Int) => {
v1 + v2
},
Seconds(8),
Seconds(4));
resDStream.print();
ssc.start()
ssc.awaitTermination()
}
}
三,注意事项
查看/var/log/flume-ng下面的日志报错信息
avro端口号绑定大于公共端口1024
注意linux防火墙service iptables stop
注意运行scala依赖的scope为 provided编译可以,但本机运行找不到class