ARM NN:Ubuntu 14.04 Caffe和TensorFlow的ARM NN SDK编译环境搭建及MNIST程序测试

Ubuntu 14.04下Caffe和TensorFlow的ARM NN SDK的aarch64编译环境搭建及MNIST程序测试

    • ARM官方测试环境
    • 1. SCons安装
    • 2.安装CMake
    • 3.下载安装boost
    • 4.使用 SCons编译Compute Library
    • 5.编译protobuf
    • 6编译Caffe
    • 7下载TensorFlow
    • 8 编译ARMNN-SDK
    • 9 MNIST(手写体图片识别测试程序)的测试

原创:转载请标明出处,违者必究!
本片文章是参考了 Configuring the Arm NN SDK build environment for TensorFlow和GarryLau的 Ubuntu 16.04环境下Configuring the Arm NN SDK build environment for Caffe的文章再根据自己实际过程中遇到问题进行了总结。在搭建环境之前最好先建一个目录用于放编译所需的环境,笔者的目录是/home/armnn/

ARM官方测试环境

• SCons. Arm has tested SCons 2.4.1, other versions might work.
• CMake. Arm has tested CMake 3.5.1, other versions might work.
• Boost. Arm have tested version 1.64.
• Protobuf. Arm has tested version 3.5.0.
• ARM NN SDK
• Compute Library
• Caffe及相关

1. SCons安装

无论安装是否安装过SCons,都可以在root用户下执行以下命令

 > 1.rm /usr/local/bin/scons*
 >2.rm -r /usr/local/lib/scons*

下载官方推荐版本,将安装包放入/home/armnn,解压进入/home/armnn/scons-2.4.1# 执行

>sudo python setup.py install

应该会顺利的安装结束

2.安装CMake

卸载原有系统上安装的cmake(如果不卸载系统自带的,直接安装,可能会出现错误)。

 > apt-get autoremove cmake

下载CMake-3.5.1-linux-x86_64.tar.gz,或者官网下载,然后直接sh cmake-3.11.1-Linux-x86_64.sh即可;如果是下载了*tar.gz的放到/home/armnn/下解压然后执行

ln -s /home/armnn/cmake-3.5.1-Linux-x86_64/bin/* /usr/bin/

3.下载安装boost

官网下载1.64.0版本,放入/home/armnn/解压之后的文件夹为boost_1_64_0,进入该文件夹运行

sh bootstrap.sh,

运行结果如下所示:

Building Boost.Build engine with toolset gcc… tools/build/src/engine/bin.linuxx86_64/b2
Detecting Python version… 2.7
Detecting Python root… /opt/fsl-imx-wayland/4.9.51-mx8-ga/sysroots/x86_64-pokysdk-linux/usr
Unicode/ICU support for Boost.Regex?.. not found.
Generating Boost.Build configuration in project-config.jam…
Bootstrapping is done. To build, run:
./b2
To adjust configuration, edit ‘project-config.jam’.
Further information:
-Command line help:
./b2 --help
- Getting started guide:
http://www.boost.org/more/getting_started/unix-variants.html
- Boost.Build documentation:
http://www.boost.org/build/doc/html/index.html

修改修改project-config.jam文件

if ! gcc in [ feature.values ]
{
using gcc : arm : aarch64-poky-linux-gcc --sysroot=$SDKTARGETSYSROOT
}//注意冒号后面的空格若为32位平台则如下
if ! gcc in [ feature.values ]
{
using gcc : arm : arm-linux-gnueabihf-gcc ;
}//注意编译的时候要是能你的编译器的环境变量

保存后执行

./b2 link=static cxxflags=-fPIC --with-filesystem --with-test --with-log --with-program_options

如图所示64位arm平台:ARM NN:Ubuntu 14.04 Caffe和TensorFlow的ARM NN SDK编译环境搭建及MNIST程序测试_第1张图片
ARM NN:Ubuntu 14.04 Caffe和TensorFlow的ARM NN SDK编译环境搭建及MNIST程序测试_第2张图片

4.使用 SCons编译Compute Library

git clone https://github.com/ARM-software/ComputeLibrary 下载
对于ARMv7-A架构的设备在/home/armnn/Compute Library/运行下面的指令进行编译:

scons extra_cxx_flags="-fPIC" benchmark_tests=1 validation_tests=1 neon=1 opencl=1 embed_kernels=1

aarch-ARMV8的架构执行

scons arch=arm64-v8a extra_cxx_flags="-fPIC" benchmark_tests=0 validation_tests=0 opencl=1 embed_kernels=1 neon=1

如果提示以下错误:

ERROR: Compiler ’ aarch64-linux-gnu-aarch64-poky-linux-g++ --sysroot=/opt/fsl-imx-wayland/4.9.51-mx8-ga/sysroots/aarch64-poky-linux’ not found

修改SContruct文件下ARMV8的prefix为“”空,
前提要先使能编译器环境在这里使用的nxp的编译器aarch64-poky-linux-g

elif env[‘arch’] == ‘arm64-v8a’:
env.Append(CXXFLAGS = [’-march=armv8-a’])
env.Append(CPPDEFINES = [‘ARM_COMPUTE_AARCH64_V8A’,‘NO_DOT_IN_TOOLCHAIN’])
if env[‘os’] == ‘linux’:
prefix = “aarch64-linux-gnu-”//改为 prefix = “”

大概一个小时可以编译完吧,期间可以安装后面的环境
注意:
在编译最新版时,可能会出现(新版计算库会提高推理速度)
arm-linux-gnueabihf-g++: internal compiler error: Killed (program cc1plus)原因是内存不足,需要增加临时swap空间
step 1:
  #sudo dd if=/dev/zero of=/home/swap bs=64M count=16
step 2:
  # sudo mkswap /home/swap (可能会提示warning: don’t erase bootbits sectorson whole disk. Use -f to force,不用理会)
step 3:
  #sudo swapon /home/swap
step 4:重新执行编译
完成编译后释放空间
关闭:
step 1:sudo swapoff /home/swap
step 2:sudo rm /home/swap

5.编译protobuf

下载

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git submodule update --init --recursive

首先为了能够使用x86的protoc编译Caffe,这里先不对protobuf进行任何配置直接执行

./autogen.sh

一般会提示

configure.ac:104: error: possibly undefined macro: AC_PROG_LIBTOOL
错误

此时需要执行

apt-get install libtool

执行autogen.sh之后,再执行./configure
依次执行make、make check 、make install 时间在半小时至一小时不等,可以先做其他事
ARM NN:Ubuntu 14.04 Caffe和TensorFlow的ARM NN SDK编译环境搭建及MNIST程序测试_第3张图片之后我们去编译Caffe和配置TensorFlow,等编译完成后,我们执行make clean后重新配置configure按照以下两种平台执行
ARMv7-A架构:

./configure --host=arm-linux \
CC=arm-linux-gnueabihf-gcc \
CXX=arm-linux-gnueabihf-g++
–with-protoc=/home/armnn/protobuf/bin/protoc


ARMv8-A架构使用自己你的目标板编译器:

./configure --host=aarch64-linux CC=aarch64-linux-gnu-gcc CXX=aarch64-linux-gnu-g++ --with-protoc=/home/armnn/protobuf/bin/protoc


6编译Caffe

git下载地址 git clone https://github.com/BVLC/caffe.git
安装环境可以参考官方安装
以下笔者根据官方的挑出14.04需要的

BLAS: apt-get install libatlas-base-dev or install OpenBLAS by sudo apt-get install libopenblas-dev or MKL for better CPU performance.
Python (optional): if you use the default Python you will need to sudo apt-get install the python-dev package to have the Python headers for building the pycaffe interface.
apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
apt-get install --no-install-recommends libboost-all-dev
apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

安装完成之后进入caffe目录

mkdir build
cmake …
make all
make install
make runtest

make all时汇报很多错误,在错误的开头会提示

error This file requires compiler and library support for the ISO C++ 2011 standard. This support is currently experimental, and must be enabled with the -std=c++11
or -std=gnu++11 compiler options.

此时需要在CMakeList.txt 的第57行添加

set(CMAKE_CXX_FLAGS “-fPIC -std=c++11”)

7下载TensorFlow

下载到/home/armnn目录下

git clone https://github.com/tensorflow/tensorflow.git

进入到tensorflow执行

/home/armnn/armnn/scripts/generate_tensorflow_protobuf.sh /home/armnn/protobuf/src/

正常情况什么都不提示,如果提示

/home/armnn/protobuf/bin/protoc: 1: /home/armnn/protobuf/bin/protoc: Syntax error: Unterminated quoted string

是因为protobuf编译没使用默认的x86编译,重新编译protobuf,之后make install

8 编译ARMNN-SDK

下载:

git clone https://github.com/ARM-software/armnn.git

进入armnn,修改CMakeLists.txt,在首行添加(增加-mfpu=neon,因为在19.05的版本中会报关于neon的编译错误,所以需要增加)

set(CMAKE_CXX_FLAGS “${CMAKE_CXX_FLAGS} -mfpu=neon -std=c++11 -Wall -Wno-unused-variable -Wold-style-cast -Wno-missing-braces -Wconversion -Wsign-conversion -pthread”)
SET(BOOST_ROOT /home/armnn/boost_1_64_0)
SET(CMAKE_C_COMPILER /home/tronlong/gcc-linaro-5.3-2016.02-x86_64_arm-linux-gnueabihf/bin/arm-linux-gnueabihf-gcc)
SET(CMAKE_CXX_COMPILER /home/tronlong/gcc-linaro-5.3-2016.02-x86_64_arm-linux-gnueabihf/bin/arm-linux-gnueabihf-g++)

创建build,进入build

cmake . . -DARMCOMPUTE_ROOT=/home/armnn/ComputeLibrary -DARMCOMPUTE_BUILD_DIR=/home/armnn/ComputeLibrary/build -DBOOST_ROOT=/home/armnn/boost_1_64_0 -DTF_GENERATED_SOURCES=/home/armnn/protobuf/src -DCAFFE_GENERATED_SOURCES=/home/armnn/caffe/build/include -DBUILD_CAFFE_PARSER=1 -DARMCOMPUTENEON=1 -DBUILD_TF_PARSER=1 -DPROTOBUF_LIBRARY_RELEASE=/home/armnn/protobuf/src/.libs/libprotobuf.so -DPROTOBUF_LIBRARY_DEBUG=/home/armnn/protobuf/src/.libs/libprotobuf.so -DPROTOBUF_INCLUDE_DIRS=/usr/local

make

完成后如图,第一次编译完成后忘记保存图片
ARM NN:Ubuntu 14.04 Caffe和TensorFlow的ARM NN SDK编译环境搭建及MNIST程序测试_第4张图片

build下会出现armnn的caffe和tensorflow库和单元测试程序UnitTests

ARM NN:Ubuntu 14.04 Caffe和TensorFlow的ARM NN SDK编译环境搭建及MNIST程序测试_第5张图片
下面我们将环境移植到开发板,笔者使用的是NXP的i.mx8mqevk的开发板,通过scp的命令将build下的程序考入目标板

scp -r libarmnn* UnitTests [email protected]:/home/root/
scp -r /home/armnn/protobuf/src/.libs/libprotobuf.so.17 [email protected]:/home/root/

在这里插入图片描述libarmnn前缀的4个库都mv到根目录/lib/

9 MNIST(手写体图片识别测试程序)的测试

首先下载官方提供的例程:

git clone https://github.com/ARM-software/ML-examples.git

进入ML-examples/armnn-mnist,编辑Makefile如下

ARMNN_LIB = /home/armnn/armnn/build
ARMNN_INC = /home/armnn/armnn/include
BOOST_ROOT = /home/armnn/boost_1_64_0
PROTOBUF = /home/armnn/protobuf/src/.libs

all: mnist_caffe mnist_tf

mnist_caffe: mnist_caffe.cpp mnist_loader.hpp
	$(CXX) -O3 -std=c++14 -I$(ARMNN_INC) -I$(BOOST_ROOT) mnist_caffe.cpp -o mnist_caffe -L$(PROTOBUF) -L$(ARMNN_LIB) -lprotobuf  -larmnn -larmnnCaffeParser -lpthread

mnist_tf: mnist_tf.cpp mnist_loader.hpp
	$(CXX) -O3 -std=c++14 -I$(ARMNN_INC) -I$(BOOST_ROOT) mnist_tf.cpp -o mnist_tf  -L$(PROTOBUF) -L$(ARMNN_LIB) -lprotobuf -larmnn -larmnnTfParser -lpthread

clean:
	-rm -f mnist_tf mnist_caffe

test: mnist_caffe mnist_tf
	LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:$(ARMNN_LIB) ./mnist_caffe
	LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:$(ARMNN_LIB) ./mnist_tf

编译的时候要注意你使用的交叉编译器,你的protobuf库,v7架构没有在caffe的编译出增加 -lpthread,但V8不增加的话会提示错误
之后进行make,编译完成后把文件夹下面的data和modle和生成的mnist_caffe\mnist_tf都scp到目标板,分别执行mnist-caffe和mnist_tf如下ARM NN:Ubuntu 14.04 Caffe和TensorFlow的ARM NN SDK编译环境搭建及MNIST程序测试_第6张图片到此,环境搭建并测试完成,有问题欢迎大家留言讨论

你可能感兴趣的:(ARMNN)