input事件获取到就该处理了。
case EventHubInterface::FINISHED_DEVICE_SCAN:
handleConfigurationChangedLocked(rawEvent->when);
break;
void InputReader::handleConfigurationChangedLocked(nsecs_t when) {
// Reset global meta state because it depends on the list of all configured devices.
updateGlobalMetaStateLocked();
// Enqueue configuration changed.
NotifyConfigurationChangedArgs args(when);
mQueuedListener->notifyConfigurationChanged(&args);
}
void InputReader::updateGlobalMetaStateLocked() {
mGlobalMetaState = 0;
for (size_t i = 0; i < mDevices.size(); i++) {
InputDevice* device = mDevices.valueAt(i);
mGlobalMetaState |= device->getMetaState();
}
}
int32_t InputDevice::getMetaState() {
int32_t result = 0;
size_t numMappers = mMappers.size();
for (size_t i = 0; i < numMappers; i++) {
InputMapper* mapper = mMappers[i];
result |= mapper->getMetaState();
}
return result;
}
mMappers[]是什么?
case EventHubInterface::DEVICE_ADDED:
addDeviceLocked(rawEvent->when, rawEvent->deviceId);
break;
InputReader::addDeviceLocked()->createDeviceLocked()
InputDevice* InputReader::createDeviceLocked(int32_t deviceId,
const InputDeviceIdentifier& identifier, uint32_t classes) {
InputDevice* device = new InputDevice(&mContext, deviceId, bumpGenerationLocked(),
identifier, classes);
// External devices.
if (classes & INPUT_DEVICE_CLASS_EXTERNAL) {
device->setExternal(true);
}
// Switch-like devices.
if (classes & INPUT_DEVICE_CLASS_SWITCH) {
device->addMapper(new SwitchInputMapper(device));
}
// Vibrator-like devices.
if (classes & INPUT_DEVICE_CLASS_VIBRATOR) {
device->addMapper(new VibratorInputMapper(device));
}
// Keyboard-like devices.
uint32_t keyboardSource = 0;
int32_t keyboardType = AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC;
if (classes & INPUT_DEVICE_CLASS_KEYBOARD) {
keyboardSource |= AINPUT_SOURCE_KEYBOARD;
}
if (classes & INPUT_DEVICE_CLASS_ALPHAKEY) {
keyboardType = AINPUT_KEYBOARD_TYPE_ALPHABETIC;
}
if (classes & INPUT_DEVICE_CLASS_DPAD) {
keyboardSource |= AINPUT_SOURCE_DPAD;
}
if (classes & INPUT_DEVICE_CLASS_GAMEPAD) {
keyboardSource |= AINPUT_SOURCE_GAMEPAD;
}
if (keyboardSource != 0) {
device->addMapper(new KeyboardInputMapper(device, keyboardSource, keyboardType));
}
// Cursor-like devices.
if (classes & INPUT_DEVICE_CLASS_CURSOR) {
device->addMapper(new CursorInputMapper(device));
}
// Touchscreens and touchpad devices.
if (classes & INPUT_DEVICE_CLASS_TOUCH_MT) {
device->addMapper(new MultiTouchInputMapper(device));
} else if (classes & INPUT_DEVICE_CLASS_TOUCH) {
device->addMapper(new SingleTouchInputMapper(device));
}
// Joystick-like devices.
if (classes & INPUT_DEVICE_CLASS_JOYSTICK) {
device->addMapper(new JoystickInputMapper(device));
}
return device;
}
很明显是根据input device->classes来添加映射的。mMappers是一个 // Touchscreens and touchpad devices.
if (classes & INPUT_DEVICE_CLASS_TOUCH_MT) {
device->addMapper(new MultiTouchInputMapper(device));
} else if (classes & INPUT_DEVICE_CLASS_TOUCH) {
device->addMapper(new SingleTouchInputMapper(device));
}
每种InputMapper都有自己的init、reset、process函数。addDeviceLocked()之前我们用的device都是通用Device对象,通过createDeviceLocked()实现了Device到InputDevice的转变。看最后有个mDevices.add(deviceId, device)。好熟悉啊,openDeviceLocked()->addDeviceLocked(device)里也有mDevices.add(device->id, device),长得真像,这个是add通用Device,class EventHub的 mDevices是这个摸样的:
int32_t InputMapper::getMetaState() {
return 0;
}
看来对于 INPUT_DEVICE_CLASS_TOUCH_MT,mGlobalMetaState一直为0。mMetaState是指什么状态?只有KeyboardInputMapper设置getMetaState()函数。
int32_t KeyboardInputMapper::getMetaState() {
return mMetaState;
}
mMetaState是meta key的一些状态,如果此时是keyboard的话mGlobalMetaState就可能记录了一些按键的dow和up。
// Enqueue configuration changed.
NotifyConfigurationChangedArgs args(when);
mQueuedListener->notifyConfigurationChanged(&args);
mQueuedListener是一个class QueuedInputListener的强指针。
void QueuedInputListener::notifyConfigurationChanged(
const NotifyConfigurationChangedArgs* args) {
mArgsQueue.push(new NotifyConfigurationChangedArgs(*args));
}
mArgsQueue是class QueuedInputListener中的一个Vector。这样一push就把NotifyConfigurationChangedArgs类型的实例push到Vector mArgsQueue中。这种push就是在Vector 中创建一个NotifyConfigurationChangedArgs对象的副本;这样就实现了将NotifyConfigurationChangedArgs事件推送到InputReader的队列中等候处理。其实是push到InputDispatch中,为什么这样说呢?再看下:
InputManager::InputManager(
const sp& eventHub,
const sp& readerPolicy,
const sp& dispatcherPolicy) {
mDispatcher = new InputDispatcher(dispatcherPolicy);
mReader = new InputReader(eventHub, readerPolicy, mDispatcher);
initialize();
}
InputReader::InputReader(const sp& eventHub,
const sp& policy,
const sp& listener) :
mContext(this), mEventHub(eventHub), mPolicy(policy),
mGlobalMetaState(0), mGeneration(1),
mDisableVirtualKeysTimeout(LLONG_MIN), mNextTimeout(LLONG_MAX),
mConfigurationChangesToRefresh(0) {
mQueuedListener = new QueuedInputListener(listener);
{ // acquire lock
AutoMutex _l(mLock);
refreshConfigurationLocked(0);
updateGlobalMetaStateLocked();
} // release lock
}
InputReader的mQueuedListener就是用mDispatcher构建的,这就是InputReader和InputDispatch通信的方式,现在又event了,就要通知InputDispatch。
void InputDevice::process(const RawEvent* rawEvents, size_t count) {
// Process all of the events in order for each mapper.
// We cannot simply ask each mapper to process them in bulk because mappers may
// have side-effects that must be interleaved. For example, joystick movement events and
// gamepad button presses are handled by different mappers but they should be dispatched
// in the order received.
size_t numMappers = mMappers.size();
for (const RawEvent* rawEvent = rawEvents; count--; rawEvent++) {
#if DEBUG_RAW_EVENTS
ALOGD("Input event: device=%d type=0x%04x code=0x%04x value=0x%08x when=%lld",
rawEvent->deviceId, rawEvent->type, rawEvent->code, rawEvent->value,
rawEvent->when);
#endif
if (mDropUntilNextSync) {
if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) {
mDropUntilNextSync = false;
#if DEBUG_RAW_EVENTS
ALOGD("Recovered from input event buffer overrun.");
#endif
} else {
#if DEBUG_RAW_EVENTS
ALOGD("Dropped input event while waiting for next input sync.");
#endif
}
} else if (rawEvent->type == EV_SYN && rawEvent->code == SYN_DROPPED) {
ALOGI("Detected input event buffer overrun for device %s.", getName().string());
mDropUntilNextSync = true;
reset(rawEvent->when);
} else {
for (size_t i = 0; i < numMappers; i++) {
InputMapper* mapper = mMappers[i];
mapper->process(rawEvent);
}
}
}
}
for循环依次处理count个rawEvents。
} else {
for (size_t i = 0; i < numMappers; i++) {
InputMapper* mapper = mMappers[i];
mapper->process(rawEvent);
}
}
假设过我们的mapper多点上报的触摸屏,所以mapper是MultiTouchInputMapper。
void InputReader::requestRefreshConfiguration(uint32_t changes) {
AutoMutex _l(mLock);
if (changes) {
bool needWake = !mConfigurationChangesToRefresh;
mConfigurationChangesToRefresh |= changes;
if (needWake) {
mEventHub->wake();
}
}
}
InputReader::loopOnce()一开始
if (changes) {
mConfigurationChangesToRefresh = 0;
timeoutMillis = 0;
refreshConfigurationLocked(changes);
}
void InputReader::refreshConfigurationLocked(uint32_t changes) {
mPolicy->getReaderConfiguration(&mConfig);
mEventHub->setExcludedDevices(mConfig.excludedDeviceNames);
if (changes) {
ALOGI("Reconfiguring input devices. changes=0x%08x", changes);
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
if (changes & InputReaderConfiguration::CHANGE_MUST_REOPEN) {
mEventHub->requestReopenDevices();
} else {
for (size_t i = 0; i < mDevices.size(); i++) {
InputDevice* device = mDevices.valueAt(i);
device->configure(now, &mConfig, changes);
}
}
}
}
void InputDevice::configure(nsecs_t when, const InputReaderConfiguration* config, uint32_t changes) {
mSources = 0;
if (!isIgnored()) {
if (!changes) { // first time only
mContext->getEventHub()->getConfiguration(mId, &mConfiguration);
}
if (!changes || (changes & InputReaderConfiguration::CHANGE_KEYBOARD_LAYOUTS)) {
if (!(mClasses & INPUT_DEVICE_CLASS_VIRTUAL)) {
sp keyboardLayout =
mContext->getPolicy()->getKeyboardLayoutOverlay(mIdentifier.descriptor);
if (mContext->getEventHub()->setKeyboardLayoutOverlay(mId, keyboardLayout)) {
bumpGeneration();
}
}
}
if (!changes || (changes & InputReaderConfiguration::CHANGE_DEVICE_ALIAS)) {
if (!(mClasses & INPUT_DEVICE_CLASS_VIRTUAL)) {
String8 alias = mContext->getPolicy()->getDeviceAlias(mIdentifier);
if (mAlias != alias) {
mAlias = alias;
bumpGeneration();
}
}
}
size_t numMappers = mMappers.size();
for (size_t i = 0; i < numMappers; i++) {
InputMapper* mapper = mMappers[i];
mapper->configure(when, config, changes);
mSources |= mapper->getSources();
}
}
}
MultiTouchInputMapper没有实现config()函数,继承了爸爸的。
void TouchInputMapper::configure(nsecs_t when,
const InputReaderConfiguration* config, uint32_t changes) {
InputMapper::configure(when, config, changes);
mConfig = *config;
if (!changes) { // first time only
// Configure basic parameters.
configureParameters();
// Configure common accumulators.
mCursorScrollAccumulator.configure(getDevice());
mTouchButtonAccumulator.configure(getDevice());
// Configure absolute axis information.
configureRawPointerAxes();
// Prepare input device calibration.
parseCalibration();
resolveCalibration();
}
if (!changes || (changes & InputReaderConfiguration::CHANGE_POINTER_SPEED)) {
// Update pointer speed.
mPointerVelocityControl.setParameters(mConfig.pointerVelocityControlParameters);
mWheelXVelocityControl.setParameters(mConfig.wheelVelocityControlParameters);
mWheelYVelocityControl.setParameters(mConfig.wheelVelocityControlParameters);
}
bool resetNeeded = false;
if (!changes || (changes & (InputReaderConfiguration::CHANGE_DISPLAY_INFO
| InputReaderConfiguration::CHANGE_POINTER_GESTURE_ENABLEMENT
| InputReaderConfiguration::CHANGE_SHOW_TOUCHES))) {
// Configure device sources, surface dimensions, orientation and
// scaling factors.
configureSurface(when, &resetNeeded);
}
if (changes && resetNeeded) {
// Send reset, unless this is the first time the device has been configured,
// in which case the reader will call reset itself after all mappers are ready.
getDevice()->notifyReset(when);
}
}
configureParameters()获取不可变的配置参数。
void MultiTouchInputMapper::configureRawPointerAxes() {
TouchInputMapper::configureRawPointerAxes();
getAbsoluteAxisInfo(ABS_MT_POSITION_X, &mRawPointerAxes.x);
getAbsoluteAxisInfo(ABS_MT_POSITION_Y, &mRawPointerAxes.y);
getAbsoluteAxisInfo(ABS_MT_TOUCH_MAJOR, &mRawPointerAxes.touchMajor);
getAbsoluteAxisInfo(ABS_MT_TOUCH_MINOR, &mRawPointerAxes.touchMinor);
getAbsoluteAxisInfo(ABS_MT_WIDTH_MAJOR, &mRawPointerAxes.toolMajor);
getAbsoluteAxisInfo(ABS_MT_WIDTH_MINOR, &mRawPointerAxes.toolMinor);
getAbsoluteAxisInfo(ABS_MT_ORIENTATION, &mRawPointerAxes.orientation);
getAbsoluteAxisInfo(ABS_MT_PRESSURE, &mRawPointerAxes.pressure);
getAbsoluteAxisInfo(ABS_MT_DISTANCE, &mRawPointerAxes.distance);
getAbsoluteAxisInfo(ABS_MT_TRACKING_ID, &mRawPointerAxes.trackingId);
getAbsoluteAxisInfo(ABS_MT_SLOT, &mRawPointerAxes.slot);
if (mRawPointerAxes.trackingId.valid
&& mRawPointerAxes.slot.valid
&& mRawPointerAxes.slot.minValue == 0 && mRawPointerAxes.slot.maxValue > 0) {
size_t slotCount = mRawPointerAxes.slot.maxValue + 1;
if (slotCount > MAX_SLOTS) {
ALOGW("MultiTouch Device %s reported %d slots but the framework "
"only supports a maximum of %d slots at this time.",
getDeviceName().string(), slotCount, MAX_SLOTS);
slotCount = MAX_SLOTS;
}
mMultiTouchMotionAccumulator.configure(getDevice(),
slotCount, true /*usingSlotsProtocol*/);
} else {
mMultiTouchMotionAccumulator.configure(getDevice(),
MAX_POINTERS, false /*usingSlotsProtocol*/);
}
}
前面一堆,设置一下code事件编码是哪些。
void MultiTouchMotionAccumulator::configure(InputDevice* device,
size_t slotCount, bool usingSlotsProtocol) {
mSlotCount = slotCount;
mUsingSlotsProtocol = usingSlotsProtocol;
mHaveStylus = device->hasAbsoluteAxis(ABS_MT_TOOL_TYPE);
delete[] mSlots;
mSlots = new Slot[slotCount];
}
mSlots是用来保存一个mt sync(SYN_MT_REPORT)或者mt slot(ABS_MT_SLOT)事件,对应一个点。mSlotCount说明一次最多能保存多少mt sync事件。对于type B mSlotCount最大值是32, mUsingSlotsProtocol = true。
if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN
&& mParameters.hasAssociatedDisplay) {
mSource = AINPUT_SOURCE_TOUCHSCREEN;
mDeviceMode = DEVICE_MODE_DIRECT;
if (hasStylus()) {
mSource |= AINPUT_SOURCE_STYLUS;
}
}
(2) configureRawPointerAxes()中获取的mRawPointerAxes.x和mRawPointerAxes.y确定width and height。触摸屏需要显示,mParameters.hasAssociatedDisplay = true;而且不是外部设备。 mHWRotation表示旋转方向。如果touch分辨率的尺寸和显示的尺寸不一致,需要调整系数mXScale和mYScale。还有其他的参数调整,用到再说。
void MultiTouchInputMapper::process(const RawEvent* rawEvent) {
TouchInputMapper::process(rawEvent);
mMultiTouchMotionAccumulator.process(rawEvent);
}
void TouchInputMapper::process(const RawEvent* rawEvent) {
mCursorButtonAccumulator.process(rawEvent);
mCursorScrollAccumulator.process(rawEvent);
mTouchButtonAccumulator.process(rawEvent);
if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) {
sync(rawEvent->when);
}
}
光标按钮作为设备键盘的处理,比如鼠标光标的左右中键、前进后退等等。
void MultiTouchMotionAccumulator::process(const RawEvent* rawEvent) {
if (rawEvent->type == EV_ABS) {
bool newSlot = false;
/*addDeviceLocked()中device->reset(when)->mapper->reset(when)->MultiTouchInputMapper::reset()->mMultiTouchMotionAccumulator.reset(getDevice())->clearSlots(),无论A类、B类mCurrentSlot都为-1。 MultiTouchInputMapper::syncTouch()的最后mMultiTouchMotionAccumulator.finishSync()只是type A的mCurrentSlot设为-1,B的呢?if (mUsingSlotsProtocol) mCurrentSlot = rawEvent->value;
*/
if (mUsingSlotsProtocol) {
if (rawEvent->code == ABS_MT_SLOT) {
mCurrentSlot = rawEvent->value;//B类,是ID
newSlot = true;//貌似只为了打印一个warnning
}
} else if (mCurrentSlot < 0) {//A类
mCurrentSlot = 0;
}
if (mCurrentSlot < 0 || size_t(mCurrentSlot) >= mSlotCount) {
#if DEBUG_POINTERS
if (newSlot) {
ALOGW("MultiTouch device emitted invalid slot index %d but it "
"should be between 0 and %d; ignoring this slot.",
mCurrentSlot, mSlotCount - 1);
}
#endif
} else {
Slot* slot = &mSlots[mCurrentSlot];
switch (rawEvent->code) {
case ABS_MT_POSITION_X:
slot->mInUse = true;//mInUse标志其所在的slot是否使用
slot->mAbsMTPositionX = rawEvent->value;
break;
case ABS_MT_POSITION_Y:
slot->mInUse = true;
slot->mAbsMTPositionY = rawEvent->value;
break;
case ABS_MT_TOUCH_MAJOR:
slot->mInUse = true;
slot->mAbsMTTouchMajor = rawEvent->value;
break;
case ABS_MT_TOUCH_MINOR:
slot->mInUse = true;
slot->mAbsMTTouchMinor = rawEvent->value;
slot->mHaveAbsMTTouchMinor = true;
break;
case ABS_MT_WIDTH_MAJOR:
slot->mInUse = true;
slot->mAbsMTWidthMajor = rawEvent->value;
break;
case ABS_MT_WIDTH_MINOR:
slot->mInUse = true;
slot->mAbsMTWidthMinor = rawEvent->value;
slot->mHaveAbsMTWidthMinor = true;
break;
case ABS_MT_ORIENTATION:
slot->mInUse = true;
slot->mAbsMTOrientation = rawEvent->value;
break;
case ABS_MT_TRACKING_ID:
if (mUsingSlotsProtocol && rawEvent->value < 0) {
// The slot is no longer in use but it retains its previous contents,
// which may be reused for subsequent touches.
/*type B不会上报SYN_MT_REPORT,是以ID为负来判断抬起的,此时标记mInUse为 false,就是标记up了,有up说明之前是down的状态,如果不是down过的,那底层driver就出问题了,没有按下就抬起的事件能存在就有点奇迹了。我们虽然标记了up,但是并没有清除slot中的其他内容,这些内容可能会被重用,所以id为-1时,需要有sync事件发出来去处理这个up,不然以后再次按下的时候,这个up事件就消失了。这样一说按下的时候也要及时发sync处理,不然就被up覆盖了。所以底层每当有点按下或抬起都会上报sync事件*/
slot->mInUse = false;
} else {
slot->mInUse = true;
slot->mAbsMTTrackingId = rawEvent->value;
}
break;
case ABS_MT_PRESSURE:
slot->mInUse = true;
slot->mAbsMTPressure = rawEvent->value;
break;
case ABS_MT_DISTANCE:
slot->mInUse = true;
slot->mAbsMTDistance = rawEvent->value;
break;
case ABS_MT_TOOL_TYPE:
slot->mInUse = true;
slot->mAbsMTToolType = rawEvent->value;
slot->mHaveAbsMTToolType = true;
break;
}
}
} else if (rawEvent->type == EV_SYN && rawEvent->code == SYN_MT_REPORT) {
// MultiTouch Sync: The driver has returned all data for *one* of the pointers.
mCurrentSlot += 1;
/*对于type A只有收到mt sync的时候mCurrentSlot才加1,mt sync之前的code底层只会上报一次,上报多次就保留一次的,可见type A会把mt sync事件按照上报顺序存储在mSlots里。type B并不会上报SYN_MT_REPORT,mCurrentSlot = rawEvent->value,mCurrentSlot的取值就是上报ABS_MT_SLOT的ID,不一定顺序存储,是根据ID编号存储的,如果某个ID没有上报,对应的slot就空着。
*/
}
}
如果事件不出意外,总会收到sync事件的。总能回到:
如果事件不出意外,总会收到sync事件的。总能回到:
if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) {
sync(rawEvent->when);
}
它很长很长。
void MultiTouchInputMapper::syncTouch(nsecs_t when, bool* outHavePointerIds) {
size_t inCount = mMultiTouchMotionAccumulator.getSlotCount();//type B=32,type A=16
size_t outCount = 0;
BitSet32 newPointerIdBits;
for (size_t inIndex = 0; inIndex < inCount; inIndex++) {
const MultiTouchMotionAccumulator::Slot* inSlot =//一个点
mMultiTouchMotionAccumulator.getSlot(inIndex);
if (!inSlot->isInUse()) {//对应点已up
continue;
}
if (outCount >= MAX_POINTERS) {//最大支持16点,但是type B的slot是32?
#if DEBUG_POINTERS
ALOGD("MultiTouch device %s emitted more than maximum of %d pointers; "
"ignoring the rest.",
getDeviceName().string(), MAX_POINTERS);
#endif
break; // too many fingers!
}
RawPointerData::Pointer& outPointer = mCurrentRawPointerData.pointers[outCount];
outPointer.x = inSlot->getX();//一个点的信息
outPointer.y = inSlot->getY();
outPointer.pressure = inSlot->getPressure();
outPointer.touchMajor = inSlot->getTouchMajor();
outPointer.touchMinor = inSlot->getTouchMinor();
outPointer.toolMajor = inSlot->getToolMajor();
outPointer.toolMinor = inSlot->getToolMinor();
outPointer.orientation = inSlot->getOrientation();
outPointer.distance = inSlot->getDistance();
outPointer.tiltX = 0;
outPointer.tiltY = 0;
outPointer.toolType = inSlot->getToolType();
if (outPointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) {
outPointer.toolType = mTouchButtonAccumulator.getToolType();
if (outPointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) {
outPointer.toolType = AMOTION_EVENT_TOOL_TYPE_FINGER;
}
}
/*判断工具的,是手指或者笔。如果有上报ABS_MT_TOOL_TYPE,并且上报了合法的工具,那ok。否则mTouchButtonAccumulator.getToolType()来判断,判断不出来就是手指,默认的也是手指。
*/
bool isHovering = mTouchButtonAccumulator.getToolType() != AMOTION_EVENT_TOOL_TYPE_MOUSE
&& (mTouchButtonAccumulator.isHovering()
|| (mRawPointerAxes.pressure.valid && inSlot->getPressure() <= 0));
/*神奇的hover事件来了。hover是光标模仿悬停事件,移动到一个对象上以及移除这个对象。产生hover的条件:
(1) 非AMOTION_EVENT_TOOL_TYPE_MOUSE工具;
(2) 设置上报BTN_TOUCH,但上报的值mBtnTouch是0;或者上报了pressure,其值<=0。
*/
outPointer.isHovering = isHovering;
// Assign pointer id using tracking id if available.
if (*outHavePointerIds) {//如果id有效,第一次为true
int32_t trackingId = inSlot->getTrackingId();
int32_t id = -1;
if (trackingId >= 0) {//上报id,有点按下的情况
for (BitSet32 idBits(mPointerIdBits); !idBits.isEmpty(); ) {
uint32_t n = idBits.clearFirstMarkedBit();
/*从idBits(idBits = mPointerIdBits)中找出第一个被标记的bit,并清除该bit,返回该bit的索引。如果所有bit都没有被标记,结果是未定义的;所以idBits.isEmpty()时for退出。*/
if (mPointerTrackingIdMap[n] == trackingId) {
id = n;
}
/*mPointerIdBits表示点的标识符,如果mPointerTrackingIdMap[n]中有标记过trackingId的值,通过for循环能找到这个n,如果找不到id就为-1,就走下面的标记流程。
*/
}
if (id < 0 && !mPointerIdBits.isFull()) {
id = mPointerIdBits.markFirstUnmarkedBit();
/*从mPointerIdBits中找出第一个未标记的bit,并标记该bit,返回该bit的索引。如果所有bit都被标记,结果是未定义的。mPointerIdBits.isFull()时,就没有地方标记了。
*/
mPointerTrackingIdMap[id] = trackingId;
}
}
/*mPointerIdBits的bit为1标记的是有一个点按下;32bit系统,可以标记32点。mPointerTrackingIdMap[]与mPointerIdBits对应,设置mPointerIdBits的第id(从0开始)个bit的同时,要设置mPointerTrackingIdMap[id] = trackingId。mPointerTrackingIdMap[id]的值存储的是点的ID,通过id可以找到ID。
*/
if (id < 0) {
/*不上报ID(只有type A会不上报)会走到这里一次,或者上报ID -1时也到这里,都会有清除动作。只要是type A总会设置*outHavePointerIds = false的。
(1) type A不上报ID的按下,在syncTouch()中hover、touch、pointer的标识符都是0,所以判断按下抬起的状态不在这个函数里。
(2) type A不上报ID的抬起,如果上报mt synch和sync之外还报了别的input event,slot->mInUse = true,会记录最后一次outPointer,只是坐标为0。还可能遗留一个hover,因为outPointer.isHovering = isHovering,如果条件满足最后的isHovering被设置,以后可用。
(3) type A上报id(抬起时为-1)的抬起,也会记录最后一次outPointer和保留isHovering状态。
(4) 上报id,typeB的抬起会设置slot->mInUse = false,不会走到这里,就不会记录最后一次outPointer,也不会将之前记录的hover、touch、pointer的标识符都清0。
*/
*outHavePointerIds = false;
mCurrentRawPointerData.clearIdBits();//清hover和touch表示符
newPointerIdBits.clear();//清点数表示符
} else {
outPointer.id = id;
/*此id表示mPointerIdBits的第id个bit,通过mPointerTrackingIdMap[id]可以找到点上报来的ID*/
mCurrentRawPointerData.idToIndex[id] = outCount;//标记点来的顺序
mCurrentRawPointerData.markIdBit(id, isHovering);//设hover或touch标识
newPointerIdBits.markBit(id);//设置点的标识
}
}
outCount += 1;
}
mCurrentRawPointerData.pointerCount = outCount;//总点数
mPointerIdBits = newPointerIdBits;//设置点的标识符
mMultiTouchMotionAccumulator.finishSync();
/*type A清slot,B不需要清,MultiTouchMotionAccumulator::process()中会处理*/
}
syncTouch()执行后点的信息就存到了mCurrentRawPointerData中。
void TouchInputMapper::assignPointerIds() {
uint32_t currentPointerCount = mCurrentRawPointerData.pointerCount;
uint32_t lastPointerCount = mLastRawPointerData.pointerCount;
mCurrentRawPointerData.clearIdBits();//清hover、touch标识bit,用自己的方法从新判断
if (currentPointerCount == 0) {//总点数为0
// No pointers to assign.
return;
}
if (lastPointerCount == 0) {//上一点数为0,所有点都是新点
// All pointers are new.
for (uint32_t i = 0; i < currentPointerCount; i++) {
uint32_t id = i;
mCurrentRawPointerData.pointers[i].id = id;
/*type A是按点顺序存储的,type B的在上面,根据id能找到点的ID,这个不能*/
mCurrentRawPointerData.idToIndex[id] = i;
mCurrentRawPointerData.markIdBit(id, mCurrentRawPointerData.isHovering(i));
/*标记一下touch或hover事件*/
}
return;
}
if (currentPointerCount == 1 && lastPointerCount == 1
&& mCurrentRawPointerData.pointers[0].toolType
== mLastRawPointerData.pointers[0].toolType) {
uint32_t id;
if (!mCurrentRawPointerData.isHovering(0) &&
!mLastRawPointerData.hoveringIdBits.isEmpty()) {
// 1 finger released and touching again. Should be safe to
// reset to id 0.
/*上一次产生了hover,那是一个上报了BTN或者pressure的up;现在没有hover了,说明有手指按下了,也是一个新点*/
id = 0;
} else {
// Only one pointer and no change in count so it must have the same id as before.
//一直是一个点
id = mLastRawPointerData.pointers[0].id;
}
mCurrentRawPointerData.pointers[0].id = id;
mCurrentRawPointerData.idToIndex[id] = 0;
mCurrentRawPointerData.markIdBit(id, mCurrentRawPointerData.isHovering(0));
return;
}
// General case.
// We build a heap of squared euclidean distances between current and last pointers
// associated with the current and last pointer indices. Then, we find the best
// match (by distance) for each current pointer.
// The pointers must have the same tool type but it is possible for them to
// transition from hovering to touching or vice-versa while retaining the same id.
PointerDistanceHeapElement heap[MAX_POINTERS * MAX_POINTERS];
/*通常情况
我们构造一个存储当前点和上一个点(与当前点和上一个点索引相关的)之间euclidean距离平方值的heap,我们就可以根据距离为当前点找到最好的匹配。
这些点必须使用同一种tool type,保持同一个id时,该tool可能使这些点从hovering转到touching,反之亦然。
*/
uint32_t heapSize = 0;
for (uint32_t currentPointerIndex = 0; currentPointerIndex < currentPointerCount;
currentPointerIndex++) {
for (uint32_t lastPointerIndex = 0; lastPointerIndex < lastPointerCount;
lastPointerIndex++) {
const RawPointerData::Pointer& currentPointer =
mCurrentRawPointerData.pointers[currentPointerIndex];
const RawPointerData::Pointer& lastPointer =
mLastRawPointerData.pointers[lastPointerIndex];
if (currentPointer.toolType == lastPointer.toolType) {
int64_t deltaX = currentPointer.x - lastPointer.x;
int64_t deltaY = currentPointer.y - lastPointer.y;
uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY);
// Insert new element into the heap (sift up).
heap[heapSize].currentPointerIndex = currentPointerIndex;
heap[heapSize].lastPointerIndex = lastPointerIndex;
heap[heapSize].distance = distance;
heapSize += 1;
}
}
}
/*两次for循环结束后,heap中存储了每个当前点与上一次所有点的euclidean距离。
*/
// Heapify
for (uint32_t startIndex = heapSize / 2; startIndex != 0; ) {
startIndex -= 1;
for (uint32_t parentIndex = startIndex; ;) {
uint32_t childIndex = parentIndex * 2 + 1;
if (childIndex >= heapSize) {
break;
}
if (childIndex + 1 < heapSize
&& heap[childIndex + 1].distance < heap[childIndex].distance) {
childIndex += 1;
}
if (heap[parentIndex].distance <= heap[childIndex].distance) {
break;
}
swap(heap[parentIndex], heap[childIndex]);
parentIndex = childIndex;
}
}
/*这是个堆排序的过程,堆本身是一个二叉树,类似于
0
/ \
1 2
/ \ / \
3 4 5 6
/ \ / \
7 8
code中需要的是最小堆的性质,如果不满足就调整。从最后一个可以作为根的结点开始。例如heapSize 为9,先把heap[3]结点为根的分支,调整为最小堆;然后调整heap[2]结点为根的分支;最后调整以heap[0]结点为根的分支,就是整个树,先将heap[0]与heap[1]、heap[2]中值小的比较,如果heap[0]最小,那相安无事;如果heap[0]不最小,那就调整为最小堆;假设heap[0]与heap[2]swap了,那需要重新调整heap[2]的分支了。最后形成的树是根结点值最小,左右结点不确定。
*/
#if DEBUG_POINTER_ASSIGNMENT
ALOGD("assignPointerIds - initial distance min-heap: size=%d", heapSize);
for (size_t i = 0; i < heapSize; i++) {
ALOGD(" heap[%d]: cur=%d, last=%d, distance=%lld",
i, heap[i].currentPointerIndex, heap[i].lastPointerIndex,
heap[i].distance);
}
#endif
// Pull matches out by increasing order of distance.
// To avoid reassigning pointers that have already been matched, the loop keeps track
// of which last and current pointers have been matched using the matchedXXXBits variables.
// It also tracks the used pointer id bits.
/*按照距离增加的顺序取出匹配项。为了避免重新分配已经匹配的指针,循环保持跟踪表示上一个和当前点已经匹配的matchedXXXBits变量,还跟踪已经使用点id的对应bit位。
*/
BitSet32 matchedLastBits(0);
BitSet32 matchedCurrentBits(0);
BitSet32 usedIdBits(0);
bool first = true;
for (uint32_t i = min(currentPointerCount, lastPointerCount); heapSize > 0 && i > 0; i--) {
while (heapSize > 0) {
if (first) {
// The first time through the loop, we just consume the root element of
// the heap (the one with smallest distance).
/*通过第一次循环,我们要消耗掉heap的根结点,因为这颗树中唯一可以判断大小的就是它,它是距离最小的一个结点。
*/
first = false;
} else {
// Previous iterations consumed the root element of the heap.
// Pop root element off of the heap (sift down).
/*之前的迭代消耗了heap的根结点,弹出heap的根结点,进行sift down(向下筛选调整),每次取堆顶端的数,然后重新构造堆,如此迭代,直到所有的数据都取出。
*/
heap[0] = heap[heapSize];//填充被取走后的heap[0]
//重新构造堆
for (uint32_t parentIndex = 0; ;) {
uint32_t childIndex = parentIndex * 2 + 1;
if (childIndex >= heapSize) {
break;
}
if (childIndex + 1 < heapSize
&& heap[childIndex + 1].distance < heap[childIndex].distance) {
childIndex += 1;
}
if (heap[parentIndex].distance <= heap[childIndex].distance) {
break;
}
swap(heap[parentIndex], heap[childIndex]);
parentIndex = childIndex;
}
#if DEBUG_POINTER_ASSIGNMENT
ALOGD("assignPointerIds - reduced distance min-heap: size=%d", heapSize);
for (size_t i = 0; i < heapSize; i++) {
ALOGD(" heap[%d]: cur=%d, last=%d, distance=%lld",
i, heap[i].currentPointerIndex, heap[i].lastPointerIndex,
heap[i].distance);
}
#endif
}
heapSize -= 1;
/*每次都取堆顶的最小值*/
uint32_t currentPointerIndex = heap[0].currentPointerIndex;
if (matchedCurrentBits.hasBit(currentPointerIndex)) continue; // already matched
uint32_t lastPointerIndex = heap[0].lastPointerIndex;
if (matchedLastBits.hasBit(lastPointerIndex)) continue; // already matched
matchedCurrentBits.markBit(currentPointerIndex);
matchedLastBits.markBit(lastPointerIndex);
uint32_t id = mLastRawPointerData.pointers[lastPointerIndex].id;
mCurrentRawPointerData.pointers[currentPointerIndex].id = id;
/*last点和current点匹配上了,current点的ID就找到了*/
mCurrentRawPointerData.idToIndex[id] = currentPointerIndex;
/*idToIndex[id]里的值就是标记点来的顺序*/
mCurrentRawPointerData.markIdBit(id,
mCurrentRawPointerData.isHovering(currentPointerIndex));
usedIdBits.markBit(id);//标记已经使用点id的对应bit位
#if DEBUG_POINTER_ASSIGNMENT
ALOGD("assignPointerIds - matched: cur=%d, last=%d, id=%d, distance=%lld",
lastPointerIndex, currentPointerIndex, id, heap[0].distance);
#endif
break;
}
}
/*内存while就是控制sift down(向下筛选调整),每次取堆顶端的数,然后重新构造堆;外层for就是控制迭代次数,直到所有的数据都取出。
*/
// Assign fresh ids to pointers that were not matched in the process.
/*如果last点数多,那么至此所有点都匹配上了;但是如果last点少,current中还有未匹配的点呢,需要为这些新点分配一下ids
*/
for (uint32_t i = currentPointerCount - matchedCurrentBits.count(); i != 0; i--) {
uint32_t currentPointerIndex = matchedCurrentBits.markFirstUnmarkedBit();
uint32_t id = usedIdBits.markFirstUnmarkedBit();
mCurrentRawPointerData.pointers[currentPointerIndex].id = id;
mCurrentRawPointerData.idToIndex[id] = currentPointerIndex;
mCurrentRawPointerData.markIdBit(id,
mCurrentRawPointerData.isHovering(currentPointerIndex));
#if DEBUG_POINTER_ASSIGNMENT
ALOGD("assignPointerIds - assigned: cur=%d, id=%d",
currentPointerIndex, id);
#endif
}
}
能进入这个函数,说明没有上报ID,是type A;如果上报ID,在syncTouch()中就把这些工作做了,就可以用上报的ID标识各个点了,很容易判断down和up。没有上报ID,就需要用一些算法来匹配当前点与上一点,从而找到软件上的id,最终判断出down和up。
mCurrentCookedPointerData.hoveringIdBits = mCurrentRawPointerData.hoveringIdBits;
mCurrentCookedPointerData.touchingIdBits = mCurrentRawPointerData.touchingIdBits;
7 分发
void TouchInputMapper::dispatchTouches(nsecs_t when, uint32_t policyFlags) {
BitSet32 currentIdBits = mCurrentCookedPointerData.touchingIdBits;
BitSet32 lastIdBits = mLastCookedPointerData.touchingIdBits;
int32_t metaState = getContext()->getGlobalMetaState();
int32_t buttonState = mCurrentButtonState;
if (currentIdBits == lastIdBits) {
if (!currentIdBits.isEmpty()) {
// No pointer id changes so this is a move event.
// The listener takes care of batching moves so we don't have to deal with that here.
/*没有指针id改变,所以这是一个移动事件。监视器负责批处理移动事件,我们不需要处理*/
dispatchMotion(when, policyFlags, mSource,
AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState,
AMOTION_EVENT_EDGE_FLAG_NONE,
mCurrentCookedPointerData.pointerProperties,
mCurrentCookedPointerData.pointerCoords,
mCurrentCookedPointerData.idToIndex,
currentIdBits, -1,
mOrientedXPrecision, mOrientedYPrecision, mDownTime);
}
} else {
// There may be pointers going up and pointers going down and pointers moving
// all at the same time.
BitSet32 upIdBits(lastIdBits.value & ~currentIdBits.value);
BitSet32 downIdBits(currentIdBits.value & ~lastIdBits.value);
BitSet32 moveIdBits(lastIdBits.value & currentIdBits.value);
BitSet32 dispatchedIdBits(lastIdBits.value);
// Update last coordinates of pointers that have moved so that we observe the new
// pointer positions at the same time as other pointers that have just gone up.
bool moveNeeded = updateMovedPointers(
mCurrentCookedPointerData.pointerProperties,
mCurrentCookedPointerData.pointerCoords,
mCurrentCookedPointerData.idToIndex,
mLastCookedPointerData.pointerProperties,
mLastCookedPointerData.pointerCoords,
mLastCookedPointerData.idToIndex,
moveIdBits);
if (buttonState != mLastButtonState) {
moveNeeded = true;
}
// Dispatch pointer up events.
while (!upIdBits.isEmpty()) {
uint32_t upId = upIdBits.clearFirstMarkedBit();
dispatchMotion(when, policyFlags, mSource,
AMOTION_EVENT_ACTION_POINTER_UP, 0, metaState, buttonState, 0,
mLastCookedPointerData.pointerProperties,
mLastCookedPointerData.pointerCoords,
mLastCookedPointerData.idToIndex,
dispatchedIdBits, upId,
mOrientedXPrecision, mOrientedYPrecision, mDownTime);
dispatchedIdBits.clearBit(upId);
}
// Dispatch move events if any of the remaining pointers moved from their old locations.
// Although applications receive new locations as part of individual pointer up
// events, they do not generally handle them except when presented in a move event.
if (moveNeeded) {
ALOG_ASSERT(moveIdBits.value == dispatchedIdBits.value);
dispatchMotion(when, policyFlags, mSource,
AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState, 0,
mCurrentCookedPointerData.pointerProperties,
mCurrentCookedPointerData.pointerCoords,
mCurrentCookedPointerData.idToIndex,
dispatchedIdBits, -1,
mOrientedXPrecision, mOrientedYPrecision, mDownTime);
}
// Dispatch pointer down events using the new pointer locations.
while (!downIdBits.isEmpty()) {
uint32_t downId = downIdBits.clearFirstMarkedBit();
dispatchedIdBits.markBit(downId);
if (dispatchedIdBits.count() == 1) {
// First pointer is going down. Set down time.
mDownTime = when;
}
dispatchMotion(when, policyFlags, mSource,
AMOTION_EVENT_ACTION_POINTER_DOWN, 0, metaState, buttonState, 0,
mCurrentCookedPointerData.pointerProperties,
mCurrentCookedPointerData.pointerCoords,
mCurrentCookedPointerData.idToIndex,
dispatchedIdBits, downId,
mOrientedXPrecision, mOrientedYPrecision, mDownTime);
}
}
}
dispatchTouches()分出来move、down和up事件,调用dispatchMotion()来分发处理。
void TouchInputMapper::dispatchMotion(nsecs_t when, uint32_t policyFlags, uint32_t source,
int32_t action, int32_t flags, int32_t metaState, int32_t buttonState, int32_t edgeFlags,
const PointerProperties* properties, const PointerCoords* coords,
const uint32_t* idToIndex, BitSet32 idBits,
int32_t changedId, float xPrecision, float yPrecision, nsecs_t downTime) {
PointerCoords pointerCoords[MAX_POINTERS];
PointerProperties pointerProperties[MAX_POINTERS];
uint32_t pointerCount = 0;
while (!idBits.isEmpty()) {
uint32_t id = idBits.clearFirstMarkedBit();
uint32_t index = idToIndex[id];
pointerProperties[pointerCount].copyFrom(properties[index]);//id信息
pointerCoords[pointerCount].copyFrom(coords[index]);//值信息
if (changedId >= 0 && id == uint32_t(changedId)) {
action |= pointerCount << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
}
/*action中的bits代表一个down或者up的指针索引,我们把实际的指针索引就存在<< AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT的位置,后面用的时候>>AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT就取出了这个索引*/
pointerCount += 1;
}
ALOG_ASSERT(pointerCount != 0);
if (changedId >= 0 && pointerCount == 1) {
// Replace initial down and final up action.
// We can compare the action without masking off the changed pointer index
// because we know the index is 0.
/*替换最初的down和最终的up。
我们可以比较没有屏蔽掉改变指针索引的action,因为我们知道index是0(id不一定是0)。
*/
if (action == AMOTION_EVENT_ACTION_POINTER_DOWN) {
action = AMOTION_EVENT_ACTION_DOWN;
} else if (action == AMOTION_EVENT_ACTION_POINTER_UP) {
action = AMOTION_EVENT_ACTION_UP;
} else {
// Can't happen.
ALOG_ASSERT(false);
}
}
NotifyMotionArgs args(when, getDeviceId(), source, policyFlags,
action, flags, metaState, buttonState, edgeFlags,
mViewport.displayId, pointerCount, pointerProperties, pointerCoords,
xPrecision, yPrecision, downTime);
// resize touch coords for (dual_display && freescale_disabled)
// rw.vout.scale: off/freescale_disabled, on/freescale_enabled
char prop_dual[PROPERTY_VALUE_MAX];
if (!mPadmouseStatus && property_get("ro.vout.dualdisplay2", prop_dual, "false")
&& (strcmp(prop_dual, "true") == 0)
&& (action == AMOTION_EVENT_ACTION_DOWN
|| action == AMOTION_EVENT_ACTION_UP
|| action == AMOTION_EVENT_ACTION_MOVE)) {
bool resize_touch = false;
if (strncmp(g_dmode_str, "panel", 5) != 0) {
char prop[PROPERTY_VALUE_MAX];
if (property_get("rw.vout.scale", prop, "on")
&& strcmp(prop, "off") == 0) {
resize_touch = true;
}
}
if (resize_touch) {
int x = 0, y = 0, w = 0, h = 0;
if(sscanf(g_daxis_str, "%d %d %d %d", &x,&y,&w,&h) > 0) {
int ww = w, hh = h;
if (strncmp(g_dmode_str, "1080p", 5) == 0) {
ww = 1920;
hh = 1080;
} else if (strncmp(g_dmode_str, "720p", 4) == 0) {
ww = 1280;
hh = 720;
} else if (strncmp(g_dmode_str, "480p", 4) == 0) {
ww = 720;
hh = 480;
}
if (ww >= w) x = (ww - w) / 2;
if (hh >= h) y = (hh - h) / 2;
for (uint32_t i = 0; i < args.pointerCount; i++) {
float coords_x = args.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_X);
float coords_y = args.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_Y);
if (ww >= w && hh >= h) { //1024*600 < 1280*720
coords_x = coords_x*(w + 2*x)/w;
coords_y = coords_y*(h + 2*y)/h;
coords_x = (coords_x - x)*(w + 2*x)/w;
coords_y = (coords_y - y)*(h + 2*y)/h;
coords_x = coords_x*w/(w + 2*x);
coords_y = coords_y*h/(h + 2*y);
} else if (ww >= w && hh < h) { //1024*768 > 1280*720
coords_x = coords_x*(w + 2*x)/w;
coords_y = coords_y*hh/h;
coords_x = (coords_x - x)*(w + 2*x)/w;
coords_y = (coords_y - 0)*hh/h;
coords_x = coords_x*w/(w + 2*x);
coords_y = coords_y*h/hh;
} else { //1024*600 > 720*480
coords_x = coords_x*ww/w;
coords_y = coords_y*hh/h;
coords_x = (coords_x - 0)*ww/w;
coords_y = (coords_y - 0)*hh/h;
coords_x = coords_x*w/ww;
coords_y = coords_y*h/hh;
}
args.pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_X, coords_x);
args.pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_Y, coords_y);
}
}
}
}
getListener()->notifyMotion(&args);
//至此各event已经分发,并且通知inputDispatch。
}