Codeforces 923A - Primal Sport

传送门:Primal Sport


A. Primal Sport
time limit per test
1.5 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Alice and Bob begin their day with a quick game. They first choose a starting number X0 ≥ 3 and try to reach one million by the process described below.

Alice goes first and then they take alternating turns. In the i-th turn, the player whose turn it is selects a prime number smaller than the current number, and announces the smallest multiple of this prime number that is not smaller than the current number.

Formally, he or she selects a prime p < Xi - 1 and then finds the minimum Xi ≥ Xi - 1 such that p divides Xi. Note that if the selected prime palready divides Xi - 1, then the number does not change.

Eve has witnessed the state of the game after two turns. Given X2, help her determine what is the smallest possible starting number X0. Note that the players don't necessarily play optimally. You should consider all possible game evolutions.

Input

The input contains a single integer X2 (4 ≤ X2 ≤ 106). It is guaranteed that the integer X2 is composite, that is, is not prime.

Output

Output a single integer — the minimum possible X0.

Examples
input
Copy
14
output
6
input
Copy
20
output
15
input
Copy
8192
output
8191
Note

In the first test, the smallest possible starting number is X0 = 6. One possible course of the game is as follows:

  • Alice picks prime 5 and announces X1 = 10
  • Bob picks prime 7 and announces X2 = 14.

In the second case, let X0 = 15.

  • Alice picks prime 2 and announces X1 = 16
  • Bob picks prime 5 and announces X2 = 20.


分析:设 f(n) 表示 N最大的质数因子

那么分解X2后,很显然X1的取值范围在[X2-P(X2)+1,X2], X0取值在[X1-P(X1)+1,X1]

时间复杂度 O(N*sqrt(N))

Bonus: Q个查询Xk ,时间复杂度 O(N log N + Q log K)


代码如下:

#include 
using namespace std;

const int maxn = 1e6+10;
int n,ans;
int f[maxn];

inline int Min(int x, int y) {return x

你可能感兴趣的:(基础数论,Codeforces)