深度学习作为今年来一个新兴的研究方向,如今真的是不要太火;而OpenCV作为一个久负盛名的开源视觉处理库,也一直被用在卷积神经网络的开源工具——caffe中,用来处理图像。而OpenCV再进入3.0时代以后,也顺应民意加入了DNN模块,能够与caffe无缝对接!
1、要想在OpenCV中运行dnn,首先得编译OpenCV3以上版本的源码,因为dnn模块封装在OpenCV的contrib库中,本博客选用的是OpenCV-3.1,采用的配置是VS2013加OpenCV-3.1,需要下载contrib库,然后在cmake中,
在“开始”菜单中点击“CMake (cmake-gui)”,打开CMake程序,此时将弹出编译设置界面。如下图所示
opencv_contrib\modules\dnn\samples
目录下的4个文件拷贝至项目文件夹内覆盖。至于model文件
bvlc_googlenet.caffemodel
需要单独下载,即训练好的分类器模型。
4、生成成功后,就可以按F5运行了,但是可能会报一个OpenCL的错误,这里,我卡了好久,后来在于在OpenCV论坛的一个评论中搜到解决方法,因为是intel的显卡和cuda有冲突,需要关闭OpenCL。这里我把整个程序贴上,读者只需要复制到工程中就可以运行了!
/**M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include
#include
#include
using namespace cv;
using namespace cv::dnn;
#include
#include
#include
#include
using namespace std;
/* Find best class for the blob (i. e. class with maximal probability) */
void getMaxClass(dnn::Blob &probBlob, int *classId, double *classProb)
{
Mat probMat = probBlob.matRefConst().reshape(1, 1); //reshape the blob to 1x1000 matrix
Point classNumber;
minMaxLoc(probMat, NULL, classProb, NULL, &classNumber);
*classId = classNumber.x;
}
std::vector readClassNames(const char *filename = "synset_words.txt")
{
std::vector classNames;
std::ifstream fp(filename);
if (!fp.is_open())
{
std::cerr << "File with classes labels not found: " << filename << std::endl;
exit(-1);
}
std::string name;
while (!fp.eof())
{
std::getline(fp, name);
if (name.length())
classNames.push_back( name.substr(name.find(' ')+1) );
}
fp.close();
return classNames;
}
int main(int argc, char **argv)
{
cv::dnn::initModule(); //Required if OpenCV is built as static libs
ocl::setUseOpenCL(false);//关闭OpenCL,就不会出错了
String modelTxt = "bvlc_googlenet.prototxt";
String modelBin = "bvlc_googlenet.caffemodel";
String imageFile = (argc > 1) ? argv[1] : "space_shuttle.jpg";
//! [Read and initialize network]
Net net = dnn::readNetFromCaffe(modelTxt, modelBin);
//! [Read and initialize network]
//! [Check that network was read successfully]
if (net.empty())
{
std::cerr << "Can't load network by using the following files: " << std::endl;
std::cerr << "prototxt: " << modelTxt << std::endl;
std::cerr << "caffemodel: " << modelBin << std::endl;
std::cerr << "bvlc_googlenet.caffemodel can be downloaded here:" << std::endl;
std::cerr << "http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel" << std::endl;
exit(-1);
}
//! [Check that network was read successfully]
//! [Prepare blob]
Mat img = imread(imageFile);
if (img.empty())
{
std::cerr << "Can't read image from the file: " << imageFile << std::endl;
exit(-1);
}
resize(img, img, Size(224, 224)); //GoogLeNet accepts only 224x224 RGB-images
dnn::Blob inputBlob = dnn::Blob::fromImages(img); //Convert Mat to dnn::Blob batch of images
//! [Prepare blob]
//! [Set input blob]
net.setBlob(".data", inputBlob); //set the network input
//! [Set input blob]
//! [Make forward pass]
net.forward(); // //compute output
//! [Make forward pass]
//! [Gather output]
dnn::Blob prob = net.getBlob("prob"); //gather output of "prob" layer
int classId;
double classProb;
getMaxClass(prob, &classId, &classProb);//find the best class
//! [Gather output]
//! [Print results]
std::vector classNames = readClassNames();
std::cout << "Best class: #" << classId << " '" << classNames.at(classId) << "'" << std::endl;
std::cout << "Probability: " << classProb * 100 << "%" << std::endl;
//! [Print results]
return 0;
} //main