Cmake编译OpenCV3.1源码+运行自带的dnn分类识别

深度学习作为今年来一个新兴的研究方向,如今真的是不要太火;而OpenCV作为一个久负盛名的开源视觉处理库,也一直被用在卷积神经网络的开源工具——caffe中,用来处理图像。而OpenCV再进入3.0时代以后,也顺应民意加入了DNN模块,能够与caffe无缝对接!

1、要想在OpenCV中运行dnn,首先得编译OpenCV3以上版本的源码,因为dnn模块封装在OpenCV的contrib库中,本博客选用的是OpenCV-3.1,采用的配置是VS2013加OpenCV-3.1,需要下载contrib库,然后在cmake中,

在“开始”菜单中点击“CMake (cmake-gui)”打开CMake程序,此时将弹出编译设置界面。如下图所示

Cmake编译OpenCV3.1源码+运行自带的dnn分类识别_第1张图片


然后点击configure,选择与你对应的vs版本,然后很快就会配置完成;别急,接下来这步很重要,如下图,找到OPENCV_EXTRA_MODULES_PATH,然后再后面添加contrib的路径,一直到contrib(例如:F:/OpenCV/opencv-3.1.0/opencv_contrib-master/opencv_contrib-master/modules),然后再次点击Configure,完成后点击Generate,就可以生成vs工程了。注意:在这过程中可能会出现一个ocl_text的错误,在搜索框找到text,然后取消后面的对勾,再次Generate就可以了。还有一个需要注意的地方:这Configure的时候选择对应的平台VS2012对应的是Win32,而VS2012 X64对应的是X64,这个和你最后生成的sln有影响,意味着每次只能生成X86的OpenCV或者是X64的版本,而不能在OpenCV.sln中通过切换同时生成两个!
Cmake编译OpenCV3.1源码+运行自带的dnn分类识别_第2张图片

2、编译源码,打开OPENCV.sln,然后rebuild所有项目,等待,大概30分钟左右,可能因每个人电脑性能不同,时间会不同,然后编译生成,右击install,仅重新生成install,然后就编译完成了。这中间可能会有的dll无法生成,因为不影响我的工作,就没再管了!如下图,源码编译的工作就完成了!
Cmake编译OpenCV3.1源码+运行自带的dnn分类识别_第3张图片

--------------------------------------分割线-----------------------------------------------
3、接下来就是使用了,其实很简单,新建一个控制台工程,然后配置OpenCV。opencv_contrib\modules\dnn\samples目录下的4个文件拷贝至项目文件夹内覆盖。
至于model文件bvlc_googlenet.caffemodel需要单独下载,即训练好的分类器模型。
Cmake编译OpenCV3.1源码+运行自带的dnn分类识别_第4张图片

4、生成成功后,就可以按F5运行了,但是可能会报一个OpenCL的错误,这里,我卡了好久,后来在于在OpenCV论坛的一个评论中搜到解决方法,因为是intel的显卡和cuda有冲突,需要关闭OpenCL。这里我把整个程序贴上,读者只需要复制到工程中就可以运行了!

/**M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include 
#include 
#include 
using namespace cv;
using namespace cv::dnn;

#include 
#include 
#include 
#include 
using namespace std;

/* Find best class for the blob (i. e. class with maximal probability) */
void getMaxClass(dnn::Blob &probBlob, int *classId, double *classProb)
{
    Mat probMat = probBlob.matRefConst().reshape(1, 1); //reshape the blob to 1x1000 matrix
    Point classNumber;

    minMaxLoc(probMat, NULL, classProb, NULL, &classNumber);
    *classId = classNumber.x;
}

std::vector readClassNames(const char *filename = "synset_words.txt")
{
    std::vector classNames;

    std::ifstream fp(filename);
    if (!fp.is_open())
    {
        std::cerr << "File with classes labels not found: " << filename << std::endl;
        exit(-1);
    }

    std::string name;
    while (!fp.eof())
    {
        std::getline(fp, name);
        if (name.length())
            classNames.push_back( name.substr(name.find(' ')+1) );
    }

    fp.close();
    return classNames;
}

int main(int argc, char **argv)
{
    cv::dnn::initModule();  //Required if OpenCV is built as static libs
	ocl::setUseOpenCL(false);//关闭OpenCL,就不会出错了

    String modelTxt = "bvlc_googlenet.prototxt";
    String modelBin = "bvlc_googlenet.caffemodel";
    String imageFile = (argc > 1) ? argv[1] : "space_shuttle.jpg";

    //! [Read and initialize network]
    Net net = dnn::readNetFromCaffe(modelTxt, modelBin);
    //! [Read and initialize network]

    //! [Check that network was read successfully]
    if (net.empty())
    {
        std::cerr << "Can't load network by using the following files: " << std::endl;
        std::cerr << "prototxt:   " << modelTxt << std::endl;
        std::cerr << "caffemodel: " << modelBin << std::endl;
        std::cerr << "bvlc_googlenet.caffemodel can be downloaded here:" << std::endl;
        std::cerr << "http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel" << std::endl;
        exit(-1);
    }
    //! [Check that network was read successfully]

    //! [Prepare blob]
    Mat img = imread(imageFile);
    if (img.empty())
    {
        std::cerr << "Can't read image from the file: " << imageFile << std::endl;
        exit(-1);
    }

    resize(img, img, Size(224, 224));                   //GoogLeNet accepts only 224x224 RGB-images
    dnn::Blob inputBlob = dnn::Blob::fromImages(img);   //Convert Mat to dnn::Blob batch of images
    //! [Prepare blob]

    //! [Set input blob]
    net.setBlob(".data", inputBlob);        //set the network input
    //! [Set input blob]

    //! [Make forward pass]
    net.forward();   //                      //compute output
    //! [Make forward pass]

    //! [Gather output]
    dnn::Blob prob = net.getBlob("prob");   //gather output of "prob" layer

    int classId;
    double classProb;
    getMaxClass(prob, &classId, &classProb);//find the best class
    //! [Gather output]

    //! [Print results]
    std::vector classNames = readClassNames();
    std::cout << "Best class: #" << classId << " '" << classNames.at(classId) << "'" << std::endl;
    std::cout << "Probability: " << classProb * 100 << "%" << std::endl;
    //! [Print results]

    return 0;
} //main


下面这个图就是成功运行后,控制台输出的结果!
Cmake编译OpenCV3.1源码+运行自带的dnn分类识别_第5张图片

你可能感兴趣的:(Cmake编译OpenCV3.1源码+运行自带的dnn分类识别)