http://en.wikipedia.org/wiki/Levenshtein_distance
* Java
* C++
* Visual Basic
* Python
Java public class Distance { //**************************** // Get minimum of three values //**************************** private int Minimum (int a, int b, int c) { int mi; mi = a; if (b < mi) { mi = b; } if (c < mi) { mi = c; } return mi; } //***************************** // Compute Levenshtein distance //***************************** public int LD (String s, String t) { int d[][]; // matrix int n; // length of s int m; // length of t int i; // iterates through s int j; // iterates through t char s_i; // ith character of s char t_j; // jth character of t int cost; // cost // Step 1 n = s.length (); m = t.length (); if (n == 0) { return m; } if (m == 0) { return n; } d = new int[n+1][m+1]; // Step 2 for (i = 0; i <= n; i++) { d[i][0] = i; } for (j = 0; j <= m; j++) { d[0][j] = j; } // Step 3 for (i = 1; i <= n; i++) { s_i = s.charAt (i - 1); // Step 4 for (j = 1; j <= m; j++) { t_j = t.charAt (j - 1); // Step 5 if (s_i == t_j) { cost = 0; } else { cost = 1; } // Step 6 d[i][j] = Minimum (d[i-1][j]+1, d[i][j-1]+1, d[i-1][j-1] + cost); } } // Step 7 return d[n][m]; } } C++ In C++, the size of an array must be a constant, and this code fragment causes an error at compile time: int sz = 5; int arr[sz]; This limitation makes the following C++ code slightly more complicated than it would be if the matrix could simply be declared as a two-dimensional array, with a size determined at run-time. In C++ it's more idiomatic to use the System Template Library's vector class, as Anders Sewerin Johansen has done in an alternative C++ implementation. Here is the definition of the class (distance.h): class Distance { public: int LD (char const *s, char const *t); private: int Minimum (int a, int b, int c); int *GetCellPointer (int *pOrigin, int col, int row, int nCols); int GetAt (int *pOrigin, int col, int row, int nCols); void PutAt (int *pOrigin, int col, int row, int nCols, int x); }; Here is the implementation of the class (distance.cpp): #include "distance.h" #include#include //**************************** // Get minimum of three values //**************************** int Distance::Minimum (int a, int b, int c) { int mi; mi = a; if (b < mi) { mi = b; } if (c < mi) { mi = c; } return mi; } //************************************************** // Get a pointer to the specified cell of the matrix //************************************************** int *Distance::GetCellPointer (int *pOrigin, int col, int row, int nCols) { return pOrigin + col + (row * (nCols + 1)); } //***************************************************** // Get the contents of the specified cell in the matrix //***************************************************** int Distance::GetAt (int *pOrigin, int col, int row, int nCols) { int *pCell; pCell = GetCellPointer (pOrigin, col, row, nCols); return *pCell; } //******************************************************* // Fill the specified cell in the matrix with the value x //******************************************************* void Distance::PutAt (int *pOrigin, int col, int row, int nCols, int x) { int *pCell; pCell = GetCellPointer (pOrigin, col, row, nCols); *pCell = x; } //***************************** // Compute Levenshtein distance //***************************** int Distance::LD (char const *s, char const *t) { int *d; // pointer to matrix int n; // length of s int m; // length of t int i; // iterates through s int j; // iterates through t char s_i; // ith character of s char t_j; // jth character of t int cost; // cost int result; // result int cell; // contents of target cell int above; // contents of cell immediately above int left; // contents of cell immediately to left int diag; // contents of cell immediately above and to left int sz; // number of cells in matrix // Step 1 n = strlen (s); m = strlen (t); if (n == 0) { return m; } if (m == 0) { return n; } sz = (n+1) * (m+1) * sizeof (int); d = (int *) malloc (sz); // Step 2 for (i = 0; i <= n; i++) { PutAt (d, i, 0, n, i); } for (j = 0; j <= m; j++) { PutAt (d, 0, j, n, j); } // Step 3 for (i = 1; i <= n; i++) { s_i = s[i-1]; // Step 4 for (j = 1; j <= m; j++) { t_j = t[j-1]; // Step 5 if (s_i == t_j) { cost = 0; } else { cost = 1; } // Step 6 above = GetAt (d,i-1,j, n); left = GetAt (d,i, j-1, n); diag = GetAt (d, i-1,j-1, n); cell = Minimum (above + 1, left + 1, diag + cost); PutAt (d, i, j, n, cell); } } // Step 7 result = GetAt (d, n, m, n); free (d); return result; } Visual Basic '******************************* '*** Get minimum of three values '******************************* Private Function Minimum(ByVal a As Integer, _ ByVal b As Integer, _ ByVal c As Integer) As Integer Dim mi As Integer mi = a If b < mi Then mi = b End If If c < mi Then mi = c End If Minimum = mi End Function '******************************** '*** Compute Levenshtein Distance '******************************** Public Function LD(ByVal s As String, ByVal t As String) As Integer Dim d() As Integer ' matrix Dim m As Integer ' length of t Dim n As Integer ' length of s Dim i As Integer ' iterates through s Dim j As Integer ' iterates through t Dim s_i As String ' ith character of s Dim t_j As String ' jth character of t Dim cost As Integer ' cost ' Step 1 n = Len(s) m = Len(t) If n = 0 Then LD = m Exit Function End If If m = 0 Then LD = n Exit Function End If ReDim d(0 To n, 0 To m) As Integer ' Step 2 For i = 0 To n d(i, 0) = i Next i For j = 0 To m d(0, j) = j Next j ' Step 3 For i = 1 To n s_i = Mid$(s, i, 1) ' Step 4 For j = 1 To m t_j = Mid$(t, j, 1) ' Step 5 If s_i = t_j Then cost = 0 Else cost = 1 End If ' Step 6 d(i, j) = Minimum(d(i - 1, j) + 1, d(i, j - 1) + 1, d(i - 1, j - 1) + cost) Next j Next i ' Step 7 LD = d(n, m) Erase d End Function
#!/user/bin/env python # -*- coding: utf-8 -*- class arithmetic(): def __init__(self): pass ''' 【编辑距离算法】 【levenshtein distance】 【字符串相似度算法】 ''' def levenshtein(self,first,second): if len(first) > len(second): first,second = second,first if len(first) == 0: return len(second) if len(second) == 0: return len(first) first_length = len(first) + 1 second_length = len(second) + 1 distance_matrix = [range(second_length) for x in range(first_length)] #print distance_matrix for i in range(1,first_length): for j in range(1,second_length): deletion = distance_matrix[i-1][j] + 1 insertion = distance_matrix[i][j-1] + 1 substitution = distance_matrix[i-1][j-1] if first[i-1] != second[j-1]: substitution += 1 distance_matrix[i][j] = min(insertion,deletion,substitution) print distance_matrix return distance_matrix[first_length-1][second_length-1] if __name__ == "__main__": arith = arithmetic() print arith.levenshtein('GUMBOsdafsadfdsafsafsadfasfadsfasdfasdfs','GAMBOL00000000000dfasfasfdafsafasfasdfdsa'