- Streamlit,一个超强的 Python 应用开发库!
一行玩python
python开发语言
大家好,我是“一行”。今天,我们要来聊一个非常酷的Python库——Streamlit。如果你有过构建Web应用的经验,或者你对快速搭建交互式应用感兴趣,那么Streamlit会是一个非常棒的工具。它可以让你用极少的代码,快速创建出功能强大且美观的Web应用。无论你是数据分析师、机器学习工程师,还是Python初学者,Streamlit都能帮你轻松实现数据可视化、模型展示等功能。今天我们就从基础开
- ElasticSearch技术解析与实战读书笔记
zhangyankun_csdn
搜索引擎elasticsearch
第一章Elasticsearch入门1.1Elasticsearch是什么1.2全文搜索Lucene倒排索引1.3基础知识1.3.1Elasticsearch术语及概念索引词term:能够被索引的精确值,索引词可以通过term查询进行准确搜索文本text:一段普通的非结构化文字,通常文本会被分析成一个个的索引词分析analysis:将文本转换为索引词的过程,依赖于分词器集群cluster:一个或多
- RAG理论到实践:高级、模块化RAG在AI工程架构中的行业通用解决方案与实施策略(Advanced RAG✨)
汀、人工智能
LLM工业级落地实践人工智能AIAgentRAG知识问答智能问答
RAG理论到实践:高级、模块化RAG在AI工程架构中的行业通用解决方案与实施策略(AdvancedRAG✨)1.RAG简介词汇解释说明embedding嵌入(embedding)是指将高维数据映射为低维表示的过程。在机器学习和自然语言处理中,嵌入通常用于将离散的符号或对象表示为连续的向量空间中的点。在自然语言处理中,词嵌入(wordembedding)是一种常见的技术,它将单词映射到实数向量,以便
- Python从0到100(六十一):机器学习实战-实现客户细分
是Dream呀
python机器学习开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- xgboost在spark集群使用指南
一颗小草333
算法mapreducespark数据挖掘
简介XGBoost是一个优化的分布式梯度增强库,具有高效、灵活和可移植性。在梯度增强框架下实现了机器学习算法。XGBoost提供了一种并行树增强(也称为GBDT、GBM),可以快速、准确地解决许多数据科学问题。相同的代码在主要的分布式环境(Hadoop、SGE、MPI)上运行,可以解决数十亿个示例的训练问题。xgb相对于gbt所做的改进:1.2.3.XGBoost可以使用R、python、java
- Python 在股票分析中的高级应用:挖掘金融数据的深度洞察
三带俩王
python金融开发语言
在当今的金融世界中,股票分析是投资者和金融从业者必备的技能。Python作为一种强大且灵活的编程语言,为股票分析提供了丰富的工具和技术。本文将深入探讨使用Python进行股票分析的高级用法,涵盖从数据获取与清洗、高级分析指标计算到机器学习和深度学习在股票分析中的应用等多个方面。一、数据获取与预处理:构建坚实的分析基础1.数据来源与获取直接从证券交易所获取数据:许多证券交易所提供了数据接口,例如,上
- 一、深度学习的基本介绍
关关钧
深度学习深度学习人工智能神经网络
机器学习的基本步骤:前馈运算、反向传播计算梯度、根据梯度更新参数值。一、定义及基本概念深度学习,就是一种利用深度人工神经网络来进行自动分类、预测和学习的技术。它可以从海量的数据中自动学习,找寻数据中的特征。所以说,它的本质就是自动提取特征的能力。可以说,深度学习就等于深度人工神经网络。一般认为超过三层的神经网络就可以叫做深度神经网络。深度学习属于一种特殊的人工智能技术。反向传播算法:此算法是人工神
- 机器学习day3
ኈ ቼ ዽ
机器学习人工智能
自定义数据集使用框架的线性回归方法对其进行拟合importmatplotlib.pyplotaspltimporttorchimportnumpyasnp#1.散点输入#1、散点输入#定义输入数据data=[[-0.5,7.7],[1.8,98.5],[0.9,57.8],[0.4,39.2],[-1.4,-15.7],[-1.4,-37.3],[-1.8,-49.1],[1.5,75.6],[0
- Python文件操作(json、csv、tsv、excel、pickle文件序列化)
herosunly
机器学习入门之工具篇Python新手快速入门python文件操作
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了Python文件操作(json、csv、tsv、excel、pickle
- sklearn模型评估全景:指标详解与应用实例
2402_85758936
scala开发语言人工智能
sklearn模型评估全景:指标详解与应用实例在机器学习中,模型评估是衡量算法性能的关键步骤。scikit-learn(简称sklearn)提供了一套全面的模型评估工具,帮助开发者量化模型的准确性、健壮性和其他重要特性。本文将详细介绍sklearn中的模型评估指标,并通过代码示例展示如何应用这些指标。模型评估的重要性模型评估指标是理解和改进模型性能的基础。它们可以提供以下信息:准确性:模型预测的准
- Python | 基于支持向量机(SVM)的图像分类案例
python收藏家
python机器学习python机器学习
支持向量机(SVM)是一种监督机器学习算法,可用于分类和回归任务。在本文中,我们将重点关注使用SVM进行图像分类。当计算机处理图像时,它将其视为二维像素阵列。数组的大小对应于图像的分辨率,例如,如果图像是200像素宽和200像素高,则数组的尺寸为200x200x3。前两个维度分别表示图像的宽度和高度,而第三个维度表示RGB颜色通道。数组中的值范围为0到255,表示每个点处像素的强度。为了使用SVM
- 【机器学习】必会降维算法之:多维缩放(MDS)
Carl_奕然
机器学习算法人工智能
多维缩放(MDS)1、引言2、多维缩放(MDS)2.1定义2.2应用场景2.3核心原理2.4实现方式2.5算法公式2.6代码示例3、总结1、引言小鱼:最近小屌丝在休假,难得的清闲,我这也闲言少叙,书归正传,咱就聊一聊降为算法之:多维缩放(MDS)在机器学习和数据科学领域,多维缩放(MultidimensionalScaling,简称MDS)是一种常用的降维技术。它能够在尽可能保留原始数据点间距离的
- 如何在 Ubuntu 20.04 或 22.04 上安装 Python 3
百川Cs
计算机基础ubuntupythonlinuxpipconda
以下是关于如何在Ubuntu20.04或22.04上安装Python3的详细步骤。Python是一种广泛使用的编程语言,适用于自动化、数据分析、机器学习等领域。Ubuntu系统通常预装了Python3,但如果需要安装或升级到最新版本,可以按照以下方法操作。检查系统是否已安装Python3打开终端(快捷键:Ctrl+Alt+T)。输入以下命令检查是否已安装Python3:python3--versi
- 探秘FreeMovie:一个开源的电影推荐系统
孟振优Harvester
探秘FreeMovie:一个开源的电影推荐系统去发现同类优质开源项目:https://gitcode.com/项目简介是一个基于深度学习的开源电影推荐系统,由pojiezhiyuanjun开发并维护。该项目的目标是为用户提供个性化的电影推荐服务,通过机器学习算法理解用户的观影偏好,并据此进行智能推荐。技术分析FreeMovie的核心架构包括以下关键组件:数据处理-项目采用Hadoop进行大数据预处
- 龙珠训练营机器学习task04
a_little_pig_
python
学习笔记为阿里云天池龙珠计划机器学习训练营的学习内容,学习链接为:https://tianchi.aliyun.com/competition/entrance/231702/introduction?spm=5176.20222472.J_3678908510.8.8f5e67c2RKrT98总体思路:分别使用LightGBM,xgboost,gbdt,catboost建立多个个体学习器(加入b
- 机器学习与分布式机器学习_经理人的机器学习–您需要知道的
cumian8165
算法神经网络大数据编程语言python
机器学习与分布式机器学习Ifyouaremanagingatechteamasaproductorprojectmanager,hereiswhatyouneedtoknowaboutmachinelearning.如果您要以产品或项目经理的身份管理技术团队,这是您需要了解的有关机器学习的知识。Machinelearninganddeeplearninghavebeenpopularbuzzwor
- 影刀 RPA:企业数字化转型的强大引擎
RPA李老师
rpa
一、影刀RPA是什么影刀RPA是一种基于机器学习和人工智能技术的自动化工具,它在当今数字化时代发挥着重要作用。影刀RPA是一款软件机器人,能模拟人的各种操作,在任何应用程式上进行鼠标点击、键盘输入、读取信息等自动化操作,释放人非主观决策、逻辑性高、规则性强的工作。在了解影刀RPA之前,我们先来认识一下RPA。RPA是RoboticProcessAutomation(机器人流程自动化)的简称,201
- 【Python篇】从零到精通:全面分析Scikit-Learn在机器学习中的绝妙应用
半截诗
Pythonpython机器学习scikit-learn人工智能深度学习数据分析随机森林
文章目录从零到精通:全面揭秘Scikit-Learn在机器学习中的绝妙应用前言第一部分:深入了解Scikit-Learn的基础知识1.什么是Scikit-Learn?2.安装Scikit-Learn3.Scikit-Learn中的基本构件4.数据集的加载与探索5.数据预处理标准化数据6.构建和训练机器学习模型构建逻辑回归模型7.模型评估与验证混淆矩阵第二部分:深入理解Scikit-Learn的高级
- 【2025优质学术推荐】征稿控制科学、仪器、智能系统、通信、计算机、电子信息、人工智能、大数据、机器学习、软件工程、网络安全方向
努力学习的大大
学术会议推荐人工智能大数据深度学习神经网络
【2025优质学术推荐】征稿控制科学、仪器、智能系统、通信、计算机、电子信息、人工智能、大数据、机器学习、软件工程、网络安全方向【2025优质学术推荐】征稿控制科学、仪器、智能系统、通信、计算机、电子信息、人工智能、大数据、机器学习、软件工程、网络安全方向文章目录【2025优质学术推荐】征稿控制科学、仪器、智能系统、通信、计算机、电子信息、人工智能、大数据、机器学习、软件工程、网络安全方向2025
- Python数据分析案例教程
kkchenjj
数据挖掘python数据分析信息可视化
Python数据分析案例教程Python在数据分析中的应用Python因其简洁的语法、强大的库支持以及广泛的社区资源,已成为数据分析领域的首选语言。它能够处理从数据清洗、数据可视化到机器学习模型构建的整个数据科学流程。本节将深入探讨Python在数据分析中的具体应用,包括但不限于数据清洗、数据探索、统计分析和预测建模。数据清洗数据清洗是数据分析的首要步骤,涉及处理缺失值、异常值、重复数据以及数据类
- 2025数学建模美赛B题完整建模思路——管理可持续旅游业
鹿鹿数模
数学建模
2025MCM问题B:管理可持续旅游业以下是我们对该题目的赛题分析,由于完整内容过长,因此在此处放出部分内容,欢迎从文末小卡片处加群获取。赛题分析以下内容包括三个主要部分:(1)题目的中文翻译(2)对题目的整体分析与思路综述(3)对题目要求的逐项详细分析与求解思路。本文的撰写将综合运用多元的数学模型、算法以及机器学习/深度学习的方法,并在必要时给出题外假设与可行的创新性思路,以期为参赛者提供较为系
- 智能运维分析决策系统:赋能数字化转型的智慧引擎
我的运维人生
运维运维开发技术共享
智能运维分析决策系统:赋能数字化转型的智慧引擎在数字化转型的大潮中,企业运维管理正经历着从传统手动运维向智能化、自动化运维的深刻转变。智能运维分析决策系统(AIOps,ArtificialIntelligenceforITOperations)作为这一转变的核心驱动力,通过融合大数据、机器学习、人工智能等先进技术,实现了对运维数据的深度洞察与智能决策,极大地提升了运维效率与质量,为企业数字业务的连
- Kmeans与KMedoids聚类对比以及python实现
呵呵爱吃菜
kmeans聚类python
在机器学习领域,聚类算法是一种常用的无监督学习方法,用于将数据集中的样本划分为若干个簇,使得同一簇内的样本尽可能相似,而不同簇之间的样本尽可能不同。K-Means和K-Medoids是两种经典的聚类算法,它们都基于划分的思想,但在具体实现和应用场景上存在一些差异。一、算法原理1.K-Means:中心点选择:K-Means算法通过计算簇内所有样本的均值来确定中心点(centroid)。距离度量:通常
- 网络安全态势感知:企业数字化转型的 “安全密钥”
知白守黑V
安全运营网络安全态势感知网络
在数字经济飞速发展的当下,网络安全已经成为企业平稳运营的关键所在。从大型企业的数据泄露事故,到中小企业遭遇的各类网络攻击,网络安全威胁无处不在。而网络安全态势感知产品,作为应对复杂网络威胁的关键技术,正逐渐成为企业守护数字资产的“智慧大脑”。一、态势感知:全景掌控,精准防御你可以把网络安全态势感知想象成企业网络的“超级侦察兵”。它借助大数据分析、机器学习这些先进技术,就像是拥有了超级强大的“洞察力
- python机器学习
方安乐
pythonpython机器学习人工智能
Python机器学习是当前最为热门的机器学习领域之一,其简洁、易用、高效的特点,让越来越多的开发者开始探索其应用。本文将从以下几个方面介绍Python机器学习的基础知识和实践案例,帮助读者更好地理解和应用机器学习技术。前提Python机器学习的应用领域A.图像识别和计算机视觉B.自然语言处理和文本分析C.数据挖掘和推荐系统深度学习A.神经网络的基本原理B.常用的深度学习框架和算法C.深度学习在图像
- 情感分析常见算法与模型及实现步骤
计算机软件程序设计
知识科普算法情感分析机器学习
【1】常见算法与模型情感分析(SentimentAnalysis)是一种自然语言处理(NLP)技术,用于识别和提取文本中的主观信息,如情绪、态度和意见。常见的算法和模型包括以下几种:传统机器学习方法朴素贝叶斯(NaiveBayes)基于贝叶斯定理,假设特征之间相互独立。计算简单,适用于大规模数据集。常用于文本分类任务。支持向量机(SVM)通过寻找最优超平面来划分不同的类别。在高维空间中表现良好,适
- 2025-1-21-sklearn学习(43) 使用 scikit-learn 介绍机器学习 楼上阑干横斗柄,寒露人远鸡相应。
汤姆和佩琦
sklearn机器学习sklearn学习python人工智能scikit-learn
文章目录sklearn学习(43)使用scikit-learn介绍机器学习43.1机器学习:问题设置43.2加载示例数据集43.3学习和预测43.4模型持久化43.4规定43.4.1类型转换43.4.2再次训练和更新参数43.4.3多分类与多标签拟合sklearn学习(43)使用scikit-learn介绍机器学习文章参考网站:https://sklearn.apachecn.org/和https
- 通过Python编程语言实现“机器学习”小项目教程案例
胡萝卜不甜
机器学习python机器学习开发语言
1.Python与机器学习概述1.1Python语言特点Python是一种广泛使用的高级编程语言,具有简洁、易读、易学的特点,这使得它成为初学者和专业人士的首选语言之一。简洁性:Python的语法简洁明了,减少了代码量,提高了开发效率。例如,与其他语言相比,Python可以用更少的代码实现相同的功能,这使得代码更容易编写和维护。易读性:Python的代码风格类似于英语,易于理解和阅读。这种易读性使
- 浅谈人群扩展(lookalike)模型
eso1983
算法
Lookalike主要用于广告或者推荐系统中,找到与种子用户相似的人群。常用的算法应该包括协同过滤、基于标签的相似度计算,还有一些机器学习模型,比如逻辑回归、随机森林,以及深度学习的模型,比如DNN或者Embedding方法。这里简单介绍一下Lookalike人群扩展(相似人群扩展)中常用算法模型的解析,涵盖原理、数学公式、实现步骤、优缺点及适用场景。1.基于标签的相似度匹配原理通过用户标签(兴趣
- Python 深度学习实战:生成对抗网络
AI天才研究院
深度学习实战AI实战AI大模型企业级应用开发实战大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍生成对抗网络(GenerativeAdversarialNetwork,GAN)是近年来较火热的深度学习模型之一,其在图像合成、视频生成、文本数据生成等领域均取得了不俗的效果。与传统的机器学习模型不同,GAN可以生成真实有效的数据,无需人工标注数据。它由两部分组成:生成器(Generator)和判别器(Discriminator)。生成器通过学习,根据噪声或随机变量(latentvar
- 微信开发者验证接口开发
362217990
微信 开发者 token 验证
微信开发者接口验证。
Token,自己随便定义,与微信填写一致就可以了。
根据微信接入指南描述 http://mp.weixin.qq.com/wiki/17/2d4265491f12608cd170a95559800f2d.html
第一步:填写服务器配置
第二步:验证服务器地址的有效性
第三步:依据接口文档实现业务逻辑
这里主要讲第二步验证服务器有效性。
建一个
- 一个小编程题-类似约瑟夫环问题
BrokenDreams
编程
今天群友出了一题:
一个数列,把第一个元素删除,然后把第二个元素放到数列的最后,依次操作下去,直到把数列中所有的数都删除,要求依次打印出这个过程中删除的数。
&
- linux复习笔记之bash shell (5) 关于减号-的作用
eksliang
linux关于减号“-”的含义linux关于减号“-”的用途linux关于“-”的含义linux关于减号的含义
转载请出自出处:
http://eksliang.iteye.com/blog/2105677
管道命令在bash的连续处理程序中是相当重要的,尤其在使用到前一个命令的studout(标准输出)作为这次的stdin(标准输入)时,就显得太重要了,某些命令需要用到文件名,例如上篇文档的的切割命令(split)、还有
- Unix(3)
18289753290
unix ksh
1)若该变量需要在其他子进程执行,则可用"$变量名称"或${变量}累加内容
什么是子进程?在我目前这个shell情况下,去打开一个新的shell,新的那个shell就是子进程。一般状态下,父进程的自定义变量是无法在子进程内使用的,但通过export将变量变成环境变量后就能够在子进程里面应用了。
2)条件判断: &&代表and ||代表or&nbs
- 关于ListView中性能优化中图片加载问题
酷的飞上天空
ListView
ListView的性能优化网上很多信息,但是涉及到异步加载图片问题就会出现问题。
具体参看上篇文章http://314858770.iteye.com/admin/blogs/1217594
如果每次都重新inflate一个新的View出来肯定会造成性能损失严重,可能会出现listview滚动是很卡的情况,还会出现内存溢出。
现在想出一个方法就是每次都添加一个标识,然后设置图
- 德国总理默多克:给国人的一堂“震撼教育”课
永夜-极光
教育
http://bbs.voc.com.cn/topic-2443617-1-1.html德国总理默多克:给国人的一堂“震撼教育”课
安吉拉—默克尔,一位经历过社会主义的东德人,她利用自己的博客,发表一番来华前的谈话,该说的话,都在上面说了,全世界想看想传播——去看看默克尔总理的博客吧!
德国总理默克尔以她的低调、朴素、谦和、平易近人等品格给国人留下了深刻印象。她以实际行动为中国人上了一堂
- 关于Java继承的一个小问题。。。
随便小屋
java
今天看Java 编程思想的时候遇见一个问题,运行的结果和自己想想的完全不一样。先把代码贴出来!
//CanFight接口
interface Canfight {
void fight();
}
//ActionCharacter类
class ActionCharacter {
public void fight() {
System.out.pr
- 23种基本的设计模式
aijuans
设计模式
Abstract Factory:提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。 Adapter:将一个类的接口转换成客户希望的另外一个接口。A d a p t e r模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。 Bridge:将抽象部分与它的实现部分分离,使它们都可以独立地变化。 Builder:将一个复杂对象的构建与它的表示分离,使得同
- 《周鸿祎自述:我的互联网方法论》读书笔记
aoyouzi
读书笔记
从用户的角度来看,能解决问题的产品才是好产品,能方便/快速地解决问题的产品,就是一流产品.
商业模式不是赚钱模式
一款产品免费获得海量用户后,它的边际成本趋于0,然后再通过广告或者增值服务的方式赚钱,实际上就是创造了新的价值链.
商业模式的基础是用户,木有用户,任何商业模式都是浮云.商业模式的核心是产品,本质是通过产品为用户创造价值.
商业模式还包括寻找需求
- JavaScript动态改变样式访问技术
百合不是茶
JavaScriptstyle属性ClassName属性
一:style属性
格式:
HTML元素.style.样式属性="值";
创建菜单:在html标签中创建 或者 在head标签中用数组创建
<html>
<head>
<title>style改变样式</title>
</head>
&l
- jQuery的deferred对象详解
bijian1013
jquerydeferred对象
jQuery的开发速度很快,几乎每半年一个大版本,每两个月一个小版本。
每个版本都会引入一些新功能,从jQuery 1.5.0版本开始引入的一个新功能----deferred对象。
&nb
- 淘宝开放平台TOP
Bill_chen
C++c物流C#
淘宝网开放平台首页:http://open.taobao.com/
淘宝开放平台是淘宝TOP团队的产品,TOP即TaoBao Open Platform,
是淘宝合作伙伴开发、发布、交易其服务的平台。
支撑TOP的三条主线为:
1.开放数据和业务流程
* 以API数据形式开放商品、交易、物流等业务;
&
- 【大型网站架构一】大型网站架构概述
bit1129
网站架构
大型互联网特点
面对海量用户、海量数据
大型互联网架构的关键指标
高并发
高性能
高可用
高可扩展性
线性伸缩性
安全性
大型互联网技术要点
前端优化
CDN缓存
反向代理
KV缓存
消息系统
分布式存储
NoSQL数据库
搜索
监控
安全
想到的问题:
1.对于订单系统这种事务型系统,如
- eclipse插件hibernate tools安装
白糖_
Hibernate
eclipse helios(3.6)版
1.启动eclipse 2.选择 Help > Install New Software...> 3.添加如下地址:
http://download.jboss.org/jbosstools/updates/stable/helios/ 4.选择性安装:hibernate tools在All Jboss tool
- Jquery easyui Form表单提交注意事项
bozch
jquery easyui
jquery easyui对表单的提交进行了封装,提交的方式采用的是ajax的方式,在开发的时候应该注意的事项如下:
1、在定义form标签的时候,要将method属性设置成post或者get,特别是进行大字段的文本信息提交的时候,要将method设置成post方式提交,否则页面会抛出跨域访问等异常。所以这个要
- Trie tree(字典树)的Java实现及其应用-统计以某字符串为前缀的单词的数量
bylijinnan
java实现
import java.util.LinkedList;
public class CaseInsensitiveTrie {
/**
字典树的Java实现。实现了插入、查询以及深度优先遍历。
Trie tree's java implementation.(Insert,Search,DFS)
Problem Description
Igna
- html css 鼠标形状样式汇总
chenbowen00
htmlcss
css鼠标手型cursor中hand与pointer
Example:CSS鼠标手型效果 <a href="#" style="cursor:hand">CSS鼠标手型效果</a><br/>
Example:CSS鼠标手型效果 <a href="#" style=&qu
- [IT与投资]IT投资的几个原则
comsci
it
无论是想在电商,软件,硬件还是互联网领域投资,都需要大量资金,虽然各个国家政府在媒体上都给予大家承诺,既要让市场的流动性宽松,又要保持经济的高速增长....但是,事实上,整个市场和社会对于真正的资金投入是非常渴望的,也就是说,表面上看起来,市场很活跃,但是投入的资金并不是很充足的......
 
- oracle with语句详解
daizj
oraclewithwith as
oracle with语句详解 转
在oracle中,select 查询语句,可以使用with,就是一个子查询,oracle 会把子查询的结果放到临时表中,可以反复使用
例子:注意,这是sql语句,不是pl/sql语句, 可以直接放到jdbc执行的
----------------------------------------------------------------
- hbase的简单操作
deng520159
数据库hbase
近期公司用hbase来存储日志,然后再来分析 ,把hbase开发经常要用的命令找了出来.
用ssh登陆安装hbase那台linux后
用hbase shell进行hbase命令控制台!
表的管理
1)查看有哪些表
hbase(main)> list
2)创建表
# 语法:create <table>, {NAME => <family&g
- C语言scanf继续学习、算术运算符学习和逻辑运算符
dcj3sjt126com
c
/*
2013年3月11日20:37:32
地点:北京潘家园
功能:完成用户格式化输入多个值
目的:学习scanf函数的使用
*/
# include <stdio.h>
int main(void)
{
int i, j, k;
printf("please input three number:\n"); //提示用
- 2015越来越好
dcj3sjt126com
歌曲
越来越好
房子大了电话小了 感觉越来越好
假期多了收入高了 工作越来越好
商品精了价格活了 心情越来越好
天更蓝了水更清了 环境越来越好
活得有奔头人会步步高
想做到你要努力去做到
幸福的笑容天天挂眉梢 越来越好
婆媳和了家庭暖了 生活越来越好
孩子高了懂事多了 学习越来越好
朋友多了心相通了 大家越来越好
道路宽了心气顺了 日子越来越好
活的有精神人就不显
- java.sql.SQLException: Value '0000-00-00' can not be represented as java.sql.Tim
feiteyizu
mysql
数据表中有记录的time字段(属性为timestamp)其值为:“0000-00-00 00:00:00”
程序使用select 语句从中取数据时出现以下异常:
java.sql.SQLException:Value '0000-00-00' can not be represented as java.sql.Date
java.sql.SQLException: Valu
- Ehcache(07)——Ehcache对并发的支持
234390216
并发ehcache锁ReadLockWriteLock
Ehcache对并发的支持
在高并发的情况下,使用Ehcache缓存时,由于并发的读与写,我们读的数据有可能是错误的,我们写的数据也有可能意外的被覆盖。所幸的是Ehcache为我们提供了针对于缓存元素Key的Read(读)、Write(写)锁。当一个线程获取了某一Key的Read锁之后,其它线程获取针对于同
- mysql中blob,text字段的合成索引
jackyrong
mysql
在mysql中,原来有一个叫合成索引的,可以提高blob,text字段的效率性能,
但只能用在精确查询,核心是增加一个列,然后可以用md5进行散列,用散列值查找
则速度快
比如:
create table abc(id varchar(10),context blog,hash_value varchar(40));
insert into abc(1,rep
- 逻辑运算与移位运算
latty
位运算逻辑运算
源码:正数的补码与原码相同例+7 源码:00000111 补码 :00000111 (用8位二进制表示一个数)
负数的补码:
符号位为1,其余位为该数绝对值的原码按位取反;然后整个数加1。 -7 源码: 10000111 ,其绝对值为00000111 取反加一:11111001 为-7补码
已知一个数的补码,求原码的操作分两种情况:
- 利用XSD 验证XML文件
newerdragon
javaxmlxsd
XSD文件 (XML Schema 语言也称作 XML Schema 定义(XML Schema Definition,XSD)。 具体使用方法和定义请参看:
http://www.w3school.com.cn/schema/index.asp
java自jdk1.5以上新增了SchemaFactory类 可以实现对XSD验证的支持,使用起来也很方便。
以下代码可用在J
- 搭建 CentOS 6 服务器(12) - Samba
rensanning
centos
(1)安装
# yum -y install samba
Installed:
samba.i686 0:3.6.9-169.el6_5
# pdbedit -a rensn
new password:123456
retype new password:123456
……
(2)Home文件夹
# mkdir /etc
- Learn Nodejs 01
toknowme
nodejs
(1)下载nodejs
https://nodejs.org/download/ 选择相应的版本进行下载 (2)安装nodejs 安装的方式比较多,请baidu下
我这边下载的是“node-v0.12.7-linux-x64.tar.gz”这个版本 (1)上传服务器 (2)解压 tar -zxvf node-v0.12.
- jquery控制自动刷新的代码举例
xp9802
jquery
1、html内容部分 复制代码代码示例: <div id='log_reload'>
<select name="id_s" size="1">
<option value='2'>-2s-</option>
<option value='3'>-3s-</option