- ComfyUI IPAdapter 技术解析:图像特征融合与角色一致性控制实践
迈火
人工智能深度学习aiAI作画图像处理stablediffusion
声明:本教程仅限于图像生成技术与工作流的研究探讨。使用者必须严格遵守《中华人民共和国民法典》第一千零一十九条等关于肖像权的法律法规。禁止将技术用于伪造身份、侵害他人肖像权或从事任何非法活动。因技术滥用导致的一切法律后果和责任,由使用者自行承担。大家好,作为一名深度使用ComfyUI的用户,今天将深入解析IPAdapter插件的核心功能与应用。IPAdapter是ComfyUI中实现图像特征融合和角
- heic图像转jpg有什么简单的方法?苹果手机图片转成常用图片
这辈子谁会真的心疼你
heic转jpgheic转换heic格式转换
heic图片是苹果手机上专用的一种图片格式,在特定的手机上可以正常展示。如果放到别的设备上就不能正常查看。为了顺利分享图片,所以我们需要把heic转换成常用的jpg图片格式。使用编程的方式实现转换。示例代码:importosimportargparsefromPILimportImageimportpillow_heif#注册HEIF图像插件pillow_heif.register_heif_op
- C#图像处理-OpenCVSharp教程(三十五) OpenCVSharp运动物体检测(一)
Color Space
OpenCVSharpC#OpenCVC#图像处理
本文作者ColorSpace,文章未经作者允许禁止转载!本文将介绍OpenCVSharp运动物体检测(一)代码演示:///图片背景差法检测运动物体MatbgImg=Cv2.ImRead("1.bmp");MatfgImg=Cv2.ImRead("55.bmp");Cv2.ImShow("bg",bgImg);Cv2.ImShow("fg",fgImg);Matgray=newMat();Matgr
- 口扫系统软件的架构设计流程
老猿的春天
三维c++口扫三维重建
[结构光图像流]↓解码结构光图案↓三角测量计算深度↓点云生成并去噪滤波↓实时配准/拼接(可选ICP/Odometry)↓网格重建(如MarchingCubes或BallPivoting)↓GPU显示(OpenGL/Open3D/VTK)
- Google 相机增强(GCam)框架原理初探:图像质量与计算摄影的系统性突破
观熵
影像技术全景图谱:架构调优与实战数码相机影像Camera
Google相机增强(GCam)框架原理初探:图像质量与计算摄影的系统性突破关键词:GCam、GoogleCamera、HDR+、SuperResZoom、Camera2API、多帧合成、算法流程、图像增强、夜视模式、Pixel相机移植摘要:GCam(GoogleCamera)作为Pixel系列设备图像质量表现的核心支撑,其背后的增强框架融合了Google长期积累的计算摄影技术,从HDR+到Sup
- iOS Camera Framework 架构实战解析:AVFoundation 核心组件与应用流程
观熵
影像技术全景图谱:架构调优与实战ios架构影像Camera
iOSCameraFramework架构实战解析:AVFoundation核心组件与应用流程关键词AVFoundation、iOS相机架构、AVCaptureSession、移动影像、相机框架、iOS开发、拍照录像、图像流处理、Apple影像系统摘要在iOS平台上,Apple提供了强大且结构清晰的AVFoundation框架来支持拍照、录像、图像捕捉与媒体处理等功能。本文将结合真实开发实践,系统梳
- ISP Pipeline(6): Color Filter Array Interpolation 色彩滤波阵列
andwhataboutit?
接口隔离原则计算机视觉人工智能
ColorFilterArrayInterpolation(CFA插值)是图像信号处理(ISP)中的核心步骤之一。它的目标是:将原始Bayer图像(只有每个像素一个颜色分量)还原成完整的RGB图像,即为每个像素补全缺失的两个颜色通道——这个过程称为Demosaicing。什么是ColorFilterArray(CFA)?传感器每个像素只能采集一个颜色通道(R、G、B);为了同时获取三种颜色信息,我
- 深度学习之基于Pytorch卷积神经网络人民币面值识别
Q1744828575
pythonpytorchplotly
欢迎大家点赞、收藏、关注、评论啦,由于篇幅有限,只展示了部分核心代码。文章目录一项目简介二、功能三、系统四.总结一项目简介 一、项目背景在日常生活和商业活动中,人民币面值识别技术具有重要的应用价值。传统的面值识别方法,如基于模板匹配或特征工程的方法,在面对复杂多变的图像环境时,往往难以达到理想的识别效果。随着深度学习技术的兴起,特别是卷积神经网络(ConvolutionalNeuralNetwo
- 深入了解Stable Diffusion:解锁AI图像生成的神秘密码 ?????
DTcode7
AI生产力AIAIGCstablediffusionAI生产力前沿
深入了解StableDiffusion:解锁AI图像生成的神秘密码?????StableDiffusion:AI的像素炼金术士基础概念:从扩散到聚焦的魔法技术深潜:核心机制解析反向扩散算法代码实验室:动手实践StableDiffusion的魔法示例一:一句话,一个世界示例二:风格迁移的艺术实战技巧与最佳实践实际挑战与解决方案结语:艺术与科技的无限对话在这个数字洪流涌动的时代,AI图像生成技术正以前
- 利用Python驾驭Stable Diffusion:原理解析、扩展开发与高级应用
个人网站:【摸鱼游戏】【神级代码资源网站】【星海网址导航】摸鱼、技术交流群点此查看详情引言随着生成式AI的迅猛发展,StableDiffusion已成为图像生成领域最受欢迎的开源模型之一。其以开放性、高质量输出和广泛社区支持赢得了无数开发者的青睐。本文将从原理出发,结合Python工具链,深入剖析如何掌握StableDiffusion的本质,并基于其能力进行扩展开发与高级应用。一、StableDi
- 深度学习目标检测之YOLOv3实战(二)训练自己的图像数据
郎郎不会飞
深度学习目标识别python深度学习
深度学习目标检测之YOLOv3实战(二)训练自己的图像数据数据集准备数据集预处理原demo修改数据集训练目标检测补充二零二零年的大年初一,给大家拜个年,祝大家鼠年吉祥,万事如意,趁着喜气,把Yolov3训练自己的数据过程,记录一下,共勉共进。同样,无人机搭载山狗拍摄的视频,目标检测的种类是模型tank和airplane,部分效果图镇贴:数据集准备首先需要将自己的数据集准备好,不同场景下的目标数据尽
- 推荐系统的视频特征-视频关键帧特征提取与向量生成
总体流程概览视频文件(.mp4)↓关键帧抽取(FFmpeg/SceneDetect)↓帧图像(.jpg)↓图像模型提取特征(CLIP/CNN/ViT)↓多帧聚合成视频向量(均值池化等)↓向量库/推荐系统模型特征提取推荐:使用OpenAI的CLIP模型CLIP(ContrastiveLanguage-ImagePretraining)适合推荐系统做跨模态建模,对视频封面帧或场景帧提取效果非常好。✅1
- 【EI会议征稿】东北大学主办第三届机器视觉、图像处理与影像技术国际会议(MVIPIT 2025)
诗远Yolanda
图像处理计算机视觉考研视频机器学习论文阅读
一、会议信息大会官网:www.mvipit.org官方邮箱:
[email protected]会议地点:辽宁沈阳主办单位:东北大学会议时间:2025年9月27日-9月29日二、征稿主题集中但不限于“机器视觉、图像处理与影像技术”等其他相关主题。机器视觉:视觉中的统计机器学习;立体视觉标定;几何建模与处理;人脸识别与手势识别;早期视觉和生物学启发的视觉;光流法和运动追踪;图像分割和图像分类;基于模型的视觉
- (全网最全,打光测试解决高反光产品)在机器视觉2D中,遇到高反光产品打光测试怎么办?
苏州大视通机器视觉
杂说科技人工智能计算机视觉opencv
关键原则:优先从物理层面消除反光(光源/光学),算法作为补充。偏振方案成本通常低于更换光源,且效果显著,建议优先尝试。在机器视觉打光测试中出现反光问题会严重影响图像质量,导致特征模糊、边缘丢失或检测失败。以下是系统性的解决方案,可根据实际情况组合应用:一、调整光源方案改变光源角度斜射照明:避免光源直射反光区域(如30°-60°环光、条形光侧打)。同轴光优化:对镜面物体改用低角度环形光(如<15°)
- RK3288解码视频时遇到的奇葩问题
melonbo
百问-音视频音视频
1、亮线问题用rk3288做视频显示,qt界面是1024x768,在切换视频源时,屏幕偶尔会出现亮线,位置在屏幕的正中间。解决方法是将qt的界面设置为1023x767,完美解决。2、亮点rk3288在解码显示h264视频时,界面的图像会出现斑驳的亮点,不仔细看还看不出来,出现的亮点有的在视频图像上,有的在qt界面上。解决方法是在现实图像界面前,先用ffplay播放一个全屏的画面,然后再显示程序的界
- HTML之常用基础标签
AA-代码批发V哥
HTMLhtml前端
HTML之常用基础标签一、HTML文档基本结构标签1.``标签2.``标签3.``标签二、文本相关基础标签1.标题标签(``-``)2.段落标签(``)3.换行标签(``)4.强调标签(``和``)5.代码标签(``、``等)三、链接相关基础标签1.超链接标签(``)2.图像标签(``)四、列表相关基础标签1.无序列表(``和``)2.有序列表(``和``)3.自定义列表(``、``和``)五、表
- SDL2渲染RGB图像
qq_52484093
音视频音视频
SDL的相关函数使用SDL渲染RGB图像#include#include#include#undefmain#pragmacomment(lib,"SDL2.lib")usingnamespacestd;intmain(){constintw=800;constinth=600;//1.初始化SDLVideo库if(SDL_Init(SDL_INIT_VIDEO)){coutpixels(newu
- SDL渲染应用(1)
好想吃杏干
音视频开发应用c++
SDL渲染应用(1)基本流程案例一:使用SDL渲染一幅RGB图像数据#include#include#pragmacomment(lib,"SDL2.lib")#undefmain()usingnamespacestd;intmain(intargc,char*argv[]){/*1.创建窗口的大小*/intw=800;inth=600;/*初始SDLvideio库,并判断是初始化成功返回0视为成
- SDL渲染一幅图像
环境配置下载源码:http://www.libsdl.org/download-2.0.php进入到SDL2-2.0.14\VisualC用visualstudio2019打开SDL.sln将工程升级到vs2019选择对的,debug|releasex64|x86进行编译生成相应的.dll、.pdb和.lib然后将对应的.dll、.pdb和.lib放到对应目录中,并配置值相应的工程目录API介绍1
- 使用Ultralytics YOLO进行数据增强
alpszero
YOLO计算机视觉应用YOLO人工智能机器学习
概述数据增强是计算机视觉领域的一项重要技术,它通过对现有图像进行各种转换,人为地扩展训练数据集。在训练深度学习模型时,数据增强有助于提高模型的鲁棒性,减少过拟合,并增强对真实世界场景的泛化。在训练计算机视觉模型的过程中,数据增强具有多种重要作用:扩展数据集:通过创建现有图像的变体,可以有效增加训练数据集的规模,而无需收集新数据。提高泛化能力:模型学会在各种条件下识别物体,使其在实际应用中更加稳健。
- 2025年最值得关注的十大OCR模型,技术进化与应用突破全面解析!
蜗牛沐雨
ocr自动化
光学字符识别(OCR)技术已经完成了从“慢、误差高、功能单一”的旧时代,向“快速、精准、多场景全覆盖”的新纪元转变。今天,OCR不再是简单的图像转文本工具,而是支撑智能办公、文档自动化、跨语言内容处理以及视觉理解的核心技术。尤其在2025年,技术格局发生了显著变化:模型更轻量,支持更复杂的文本结构识别,具备强大的多语言和多模态处理能力,能应对实时场景识别甚至复杂的工业图像分析。本文整合了GitHu
- 遥感影像数据处理-大图滑窗切分为小图
GIS潮流
遥感语义分割
功能需求据所周知,遥感影像的尺寸有大有小,大的达到几万x几万像素,而图像分割算法模型在训练中尺寸适中,比如256x256,512x512,1024x1024等等,如果直接将遥感影像的原图输入模型中进行训练,大概率会提示内存和显存不足,因此针对遥感影像的模型训练,一般都需要将影像裁剪为小图。裁剪后的效果图如下:解决思路基于上面的需求,写了一套裁剪算法流程。主要考虑的是在裁剪过程中,从左往右、从上到下
- 大学专业科普 | 图像处理、智能控制与计算机工程
鸭鸭鸭进京赶烤
计算机工程
计算机工程专业介绍计算机工程专业是一个非常热门且具有广泛发展前景的领域,它涵盖了计算机硬件、软件以及它们之间的交互等多个方面。以下是对计算机工程专业的详细介绍:专业定义计算机工程专业主要是研究计算机系统的设计、开发、测试和维护。它融合了计算机科学和电子工程的知识,侧重于计算机硬件和软件的协同工作,以及计算机系统在各个领域的应用。课程设置基础课程数学课程物理课程计算机基础课程专业核心课程硬件方向课程
- 邮科ODM摄像头高温生存法则
在钢铁冶炼等高温工业场景,监控设备面临光学性能衰减、电子元件失效、材料形变等多重挑战。经过实测,环境温度超60℃,普通摄像头图像噪点激增300%、焦点偏移。本文以邮科ODM摄像头为例,揭示其突破环境限制的逻辑。一、高温对监控设备的复合挑战工业高温环境对监控设备影响呈链式反应。测试中,75℃时摄像头图像传感器暗电流噪声增4倍,夜视画面出现大量绿色噪点,镜头组材料热膨胀系数差异致光学失焦,关键设备读数
- KITTI数据集可视化实用教程及源码解析
国营窝窝乡蛮大人
本文还有配套的精品资源,点击获取简介:本文详细介绍如何使用源码实现KITTI数据集的可视化,强调数据集可视化在计算机视觉领域的关键作用。重点介绍如何加载、处理和融合KITTI数据集中的图像和激光雷达数据,并通过可视化手段分析结果,包括图像点云投影、坐标转换、颜色映射等技术。读者将通过学习源码深入理解数据结构、文件格式,并定制化工具以满足特定项目需求。1.计算机视觉数据集可视化的重要性在计算机视觉领
- 导数:微积分的核心概念与实用解析
你一身傲骨怎能输
数学分析导数
文章摘要导数是描述函数瞬时变化率的数学工具,定义为极限值(f’(a)=limh→0f(a+h)−f(a)h)\lim_{h\to0}\frac{f(a+h)-f(a)}{h})limh→0hf(a+h)−f(a)),若存在则称函数在点a可导。其几何意义是函数图像在点(a,f(a))处切线的斜率。导数计算的是函数值增量与自变量增量比值的极限,反映瞬时变化率。例如,(f(x)=x^2)的导数为(f’
- 人工智能-基础篇-10-什么是卷积神经网络CNN(网格状数据处理:输入层,卷积层,激活函数,池化层,全连接层,输出层等)
weisian151
人工智能人工智能cnn神经网络
卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理网格状数据(如图像、视频、音频)设计的深度学习模型。它通过模拟生物视觉机制,从原始数据中自动提取多层次的特征,最终实现高效的分类、检测或生成任务。1、核心概念与原理1、生物视觉启发局部感受野:模仿人类视觉皮层神经元仅响应局部区域刺激的特性,每个神经元关注输入数据的局部区域(如图像的一小块区域)。权值共享:同一
- CNN-GRU混合模型学习笔记
weixin_54372988
cnngru学习
GRU学习笔记CNN:卷积神经网络GRU(GateRecurrentUnit),门控循环单元CNN:卷积神经网络3个组成部分:1.卷积层——提取图像局部特征2.池化层——降维(防止过拟合)3.全连接层——输出结果一个卷积核扫完整张图片,得到每个小区域的特征值具体应用中通常有多个卷积核CNN可能有多层结构,如LeNet-5:卷积层–池化层–卷积层–池化层–卷积层–全连接层处理时间序列(1D序列):(
- 构建私有视觉搜索应用:多模态大模型的应用实例
2301_80727036
自然语言处理
在当今的科技时代,视觉搜索功能已经不再是新鲜事物,许多智能手机用户都可以通过自然语言搜索照片。随着开源多模态大型语言模型(Multi-modalLLMs)的兴起,我们现在可以为自己构建这种视觉搜索应用,用于管理自己的私人照片收藏。本教程将向您展示如何通过代码示例,使用开源多模态LLM构建私有视觉搜索和问答系统。技术背景介绍多模态大模型结合了文本和图像处理能力,使得我们可以开发更智能的应用程序。通过
- 多模态融合相机L3CAM
moonsims
人工智能
多模态融合相机L3CAML3CAM是Beamagine公司推出的多模态传感器融合技术,结合了激光雷达(LiDAR)和可见光摄像头,旨在为自动驾驶、工业机器人和其他需要精确环境感知的应用场景提供高效、安全的解决方案。L3CAM技术参数L3CAM结合了LiDAR和可见光摄像头,使其能够提供三维空间感知及图像级别的环境识别能力激光雷达部分(LiDAR)探测范围:大约200米(具体范围根据不同环境和反射面
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的