- 高效批量单词翻译工具的设计与应用
本文还有配套的精品资源,点击获取简介:在信息技术飞速发展的今天,批量单词翻译工具通过计算机的数据处理能力,大大提高了语言学习和文字处理的效率。用户通过简单输入单词列表到一个文本文件,并运行翻译程序,即可获得翻译结果并保存至指定文件。该工具集成了内置或外部翻译引擎,利用自然语言处理技术实现快速准确的翻译,并可能提供词性识别等附加功能。尽管机器翻译无法完全取代人工校对,但它为用户提供了一种高效的翻译解
- [特殊字符] 实时数据洪流突围战:Flink+Paimon实现毫秒级分析的架构革命(附压测报告)——日均百亿级数据处理成本降低60%的工业级方案
Lucas55555555
flink大数据
引言:流批一体的时代拐点据阿里云2025白皮书显示,实时数据处理需求年增速达240%,但传统Lambda架构资源消耗占比超运维成本的70%。某电商平台借助Flink+Paimon重构实时数仓后,端到端延迟从分钟级压缩至800ms,计算资源节省5.6万核/月。技术红利窗口期:2025年ApachePaimon1.0正式发布,支持秒级快照与湖仓一体,成为替代Iceberg的新范式一、痛点深挖:实时数仓
- 提升企业级数据处理效率!TDengine 四个集群优化点详解
TDengine (老段)
TDengine运维大数据数据库物联网时序数据库服务器运维tdengine
为了帮助企业更好地进行大数据处理,我们在此前TDengine3.x系列版本中进行了几项与集群相关的优化和新功能开发,以提升集群的稳定性和在异常情况下的恢复能力。这些优化包括clusterID隔离、leaderrebalance、raftlearner和restorednode。本文将对这几项重要优化进行详细阐述,以解答企业在此领域的疑问,并帮助大家更好地应对相关挑战。clusterID隔离问题fi
- Python的科学计算库NumPy(一)
linlin_1998
pythonnumpy开发语言
NumPy(NumericalPython)是Python中最基础、最重要的科学计算库之一,提供了高性能的多维数组(ndarray)对象和大量数学函数,是许多数据科学、机器学习库(如Pandas、SciPy、TensorFlow等)的基础依赖。1.创建一个numpy里面的一维数组importnumpyasnp###通过array方法创建一个ndarrayarray1=np.array([1,2,3
- 24GB GPU 中的 DeepSeek R1:Unsloth AI 针对 671B 参数模型进行动态量化
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseekollama
简介最初的DeepSeekR1是一个拥有6710亿个参数的语言模型,UnslothAI团队对其进行了动态量化,将模型大小减少了80%(从720GB减少到131GB),同时保持了强大的性能。当添加模型卸载功能时,该模型可以在24GBVRAM下以低令牌/秒的推理速度运行。推荐文章《本地构建AI智能分析助手之01快速安装,使用PandasAI和Ollama进行数据分析,用自然语言向你公司的数据提问为决策
- Python Day9
@浙大疏锦行PythonDay9.内容:热力图的绘制enumerate()方法子图的绘制代码:list_nums=[1,2,3,4,5,6]forindex,valinenumerate(list_nums):print(f"index={index},val={val}")forvalinlist_nums:print(f"val={val}")importpandasaspdimportmat
- 全面探索Kafka:架构、应用与流处理
Kafka:企业级消息系统与流处理平台的深度解析ApacheKafka作为分布式流处理平台,广泛应用于大数据处理和实时分析领域。本文将基于其官方文档,详细探讨Kafka的核心功能、应用场景以及如何进行有效管理。背景简介Kafka作为高吞吐量的消息系统,支持企业级的发布-订阅模式。它能够处理大量实时数据,并支持高并发读写操作。本文将依据Kafka官方文档的内容,逐层深入,从入门到高级应用,帮助读者全
- Flink DataStream API详解(一)
bxlj_jcj
Flinkflink大数据
一、引言Flink的DataStreamAPI,在流处理领域大显身手的核心武器。在很多实时数据处理场景中,如电商平台实时分析用户购物行为以实现精准推荐,金融领域实时监控交易数据以防范风险,DataStreamAPI都发挥着关键作用,能够对源源不断的数据流进行高效处理和分析。接下来,就让我们一起深入探索FlinkDataStreamAPI。二、DataStream编程基础搭建在开始使用FlinkDa
- OpenCV图像数据处理:convertTo,normalize和scaleAdd
luofeiju
OpenCV函数实战opencv
在OpenCV图像处理的世界里,有几个函数进行一些基本数据变换:cv::convertTo():类型转换与线性缩放;cv::normalize():归一化处理;cv::scaleAdd():加权叠加运算。cv::addWeighted():与scaleAdd相似,进行加权叠加运算;一、cv::convertTo():线性变换+数据类型转换voidcv::Mat::convertTo(OutputA
- Matlab裁剪降水数据:1km掩膜制作实战
咋(za)说
matlab降水数据处理裁剪掩膜制作降水数据裁剪China_Pre
1km降水数据处理-制作数据裁剪掩膜1.数据概述2掩膜文件制作示例2.1数据准备2.2matlab掩膜制作示例代码3结语 中国1km分辨率逐月降水量数据集(1901-2024)是高精度、长时间序列的气候数据产品,广泛应用于水文、生态、农业等领域的研究。本篇基于应用需要,以该数据集为输入,结合研究区shp边界文件,制作用于数据提取/裁剪的掩膜文件。下面为具体内容。1.数据概述 中国1km分辨率逐
- python-pandas数据分析+案例分析
文章目录前言一、汽车销售数据可视化分析1.各年度汽车总销量及环比,各车类、级别车辆销量及环比2.车辆销售规模及环比、不同价位车销量及环比3.各车系、厂商、品牌车销量及环比,市占率及变化趋势4.品牌、车类、车型、级别的各top销量二、地质灾害航空公司客户价值分析1.原始数据存在少量的缺失值和异常值前言一、汽车销售数据可视化分析1.各年度汽车总销量及环比,各车类、级别车辆销量及环比importnump
- pandas销售数据分析
pandas销售数据分析数据保存在data目录消费者数据:customers.csv商品数据:products.csv交易数据:transactions.csvcustomers.csv数据结构:字段描述customer_id客户IDgender性别age年龄region地区membership_date会员日期products.csv数据结构:字段描述product_id产品IDcategory
- 【Python办公】Excel透视转数据图表(饼状图\柱状图\折线图-可拓展)
小庄-Python办公
Python办公自动化pythonexcel开发语言Excel透视Excel透视工具python数据分析数据分析
目录专栏导读前言项目概述技术栈选择核心依赖库核心架构设计类结构设计数据流设计界面设计实现布局结构动态界面更新核心功能实现1.透视表计算2.数据排序功能3.数据可视化4.数据统计功能错误处理和用户体验输入验证异常处理项目亮点和创新点1.灵活的多列组合2.智能数据类型处理3.一体化的数据处理流程4.用户友好的界面设计使用场景扩展建议功能扩展性能优化总结完整代码结尾专栏导读欢迎来到Python办公自动化
- 【鸿蒙实战开发】HarmoneyOS如何添加首选项功能
「已注销」
鸿蒙安卓前端harmonyosjava华为android鸿蒙前端
什么是用户首选项?用户首选项为应用提供Key-Value键值型的数据处理能力,支持应用持久化轻量级数据,并对其修改和查询。当用户希望有一个全局唯一存储的地方,可以采用用户首选项来进行存储。Preferences会将该数据缓存在内存中,当用户读取的时候,能够快速从内存中获取数据,当需要持久化时可以使用flush接口将内存中的数据写入持久化文件中。用户首选项运作机制用户首选项的使用场景Preferen
- 数据库备份、导入、开窗函数及优化方式全解析
云朵大王
数据库
在数据库的日常管理和操作中,备份与导入是保障数据安全的重要手段,开窗函数能提升数据处理的灵活性,而合理的优化方式则是保证数据库高效运行的关键。今天,我们就来全面梳理这些知识点,并通过例题加深理解。一、数据库备份与导入(一)核心知识点数据库备份,简单来说就是通过转存SQL文件,将数据库的结构和数据完整保存下来。这就好比给数据库做了一个“快照”,一旦数据出现丢失、损坏等问题,这个“快照”就能派上大用场
- 如何通过YashanDB优化企业大数据处理流程
数据库
在当今数据驱动的商业环境中,企业面临着巨大的数据处理挑战。性能瓶颈、数据一致性问题和可扩展性需求使得大数据处理成为一项复杂任务。作为一种新兴的数据库管理系统,YashanDB以其独特的架构设计和强大的数据处理能力,在解决这些挑战方面提供了有效的手段。本文旨在探讨如何利用YashanDB优化大数据处理流程,为企业提供高效、可靠的解决方案。YashanDB的体系架构与部署形态YashanDB支持多种部
- 基于Python的旅游数据可视化应用
摘要本文详细介绍了一个功能完善的基于Python语言开发的旅游行业数据可视化分析应用系统。该系统采用Pandas这一强大的数据处理库进行数据清洗、转换和预处理工作,确保数据质量可靠。在可视化展示方面,系统整合了Matplotlib和Seaborn两大主流可视化库,通过丰富的图表类型直观呈现数据分析结果。特别值得一提的是,所有可视化图表均采用统一的绿色主题配色方案,这种设计不仅美观大方,更能突出体现
- Pandas 学习教程
_pass_
Data-Alaysispandas信息可视化
目录定义基本操作一维数组操作二维数组操作数据选择过滤数据处理数据清洗数据转换数据分析排序分组聚合数据透视表高级操作合并数据时间序列处理自定义函数调用数据可视化集成数据导出和导入大数据分块处理定义全称:'paneldata'and'pythondataanalysis'Analy:Series(一维数据)、DataFrame(二维数据)主要应用:数据清洗:处理缺失数据、重复数据等数据转换:改变数据的
- 华为云对碳管理系统的全生命周期数据处理流程
Hy行者勇哥
华为云知识华为云
碳管理系统的全生命周期数据处理流程包含完整的数据采集、处理、治理、分析和应用的流程架构,可以理解为是一个核心是围绕数据的“采集-传输-处理-存储-治理-分析-应用”链路展开。以下是对每个阶段的解释,以及它们与数据模型、算法等的关系:1.设备接入(IoTDA)功能:负责将园区、工厂、建筑内的各种能源设备(电表、水表、蒸汽、废气排放传感器等)接入系统,采集原始数据。与数据模型、算法的关系:这是数据源头
- 如何选择适合自己企业的YashanDB数据库托管服务?
数据库
引言在当前数据驱动的业务环境中,企业面临着许多挑战,例如性能瓶颈、数据一致性问题和大规模数据处理需求等。因此,选择合适的数据库托管服务成为企业成功的关键因素之一。YashanDB作为一款具备高性能与高可用性的数据库系统,为企业提供了灵活的数据库部署和管理选项。然而,不同企业的需求差异化,需要综合考量多方面的因素来选择最适合的托管服务。本文旨在帮助企业在选择YashanDB数据库托管服务时从多角度进
- 如何通过YashanDB提升数据处理效率
数据库
在如今的数据库技术领域,企业面临着数据处理效率的挑战。这些挑战来源于各种因素,包括性能瓶颈、数据一致性问题以及日益增长的数据量。这些问题不仅影响了数据的处理速度,而且也对决策的实时性提出了更高的要求。因此,选择一个高效的数据库系统显得尤为重要。YashanDB凭借其先进的架构和处理能力,可以有效提升数据处理效率。本文将深入分析YashanDB的关键技术及其如何改善数据处理过程,以及为技术人员提供具
- 如何通过YashanDB数据库实现企业级数据分区管理?
数据库
在当今大数据时代,企业面临着海量数据的管理和优化访问的问题。如何有效地组织和划分庞大的数据集,以提升查询性能和运维效率,成为数据库系统设计的核心挑战。数据分区技术作为解决大规模数据处理的关键手段,能够显著减少无关数据的访问,优化资源利用率。本文聚焦于YashanDB数据库,详细解析其数据分区管理的实现机制及应用,为企业级应用提供高效、灵活的数据分区解决方案。YashanDB中的数据分区基础Yash
- PCL改进的体素滤波器
代码探险狂人
PCL
体素滤波是一种常用的点云数据处理方法,可以用于去除噪声、平滑点云数据以及进行体素化等操作。PCL(点云库)是一个广泛使用的开源库,提供了丰富的点云处理算法和工具。在本文中,我们将介绍如何改进PCL的体素滤波器,并提供相应的源代码。体素滤波器是一种基于体素网格的滤波方法,它将点云数据划分为规则的体素网格,并对每个体素内的点进行处理。传统的体素滤波器在去除噪声和平滑数据方面表现良好,但在一些特定场景下
- Python 3.9.0 64位:完整安装与配置教程
D哥有个初二君
本文还有配套的精品资源,点击获取简介:Python3.9.064位安装包为Windows系统上的Python最新版本,特别适用于数据处理、Web开发及自动化脚本等领域。本教程介绍了如何在HarmonyOS开发环境中安装并配置Python3.9.064位版本,包括系统兼容性、下载安装、环境变量配置、安装验证及pip更新。同时提供了Python基础知识,如基础语法、模块导入、面向对象编程、异常处理和文
- 如何通过YashanDB增强数据处理的灵活性与扩展性?
数据库
在现代数据处理领域,面对海量数据和复杂的查询需求,如何优化数据库系统以提高数据处理的灵活性与扩展性已成为关注的焦点。由于传统的数据库系统往往在处理高并发、复杂查询和动态变化的数据要求时存在性能瓶颈,YashanDB通过其独特的体系架构和功能设计,提供了一系列解决方案。本文将深入分析YashanDB的技术实现,以探讨其如何在动态业务环境中提升数据处理的灵活性与扩展性。YashanDB的体系架构Yas
- 如何通过YashanDB数据库提升数据处理效率
数据库
在当前数据密集型应用和海量数据处理需求日益增长的背景下,数据库性能瓶颈和数据一致性问题成为普遍挑战。面对业务复杂性和数据量的指数级增长,如何高效存储、调度与处理数据,保障系统的高可用性和扩展性,是数据库技术的重要课题。针对这些挑战,YashanDB作为一款新一代高性能关系型数据库,凭借其多样化部署模式、先进的存储机制和智能优化组件,为数据处理效率的提升提供了系统解决方案。本文将面向数据库设计者、系
- 通过YashanDB提升大数据处理能力的指南
数据库
数据的急剧增长给数据库技术领域带来了诸多挑战,包括性能瓶颈、数据一致性问题及处理效率低下等。为了应对这些挑战,企业需采取有效的技术手段来提升大数据处理能力。YashanDB作为一款高性能的数据库产品,通过其先进的体系架构、优化的数据存储形式以及强大的并发控制能力,有效地提升了大数据环境下的处理性能。本文旨在为技术人员和决策者提供深入的技术分析和可操作的建议,通过YashanDB的功能特性来实现大数
- 如何通过YashanDB数据库强化数据安全管理
数据库
引言随着信息技术的不断发展,数据安全管理的问题逐渐显现出其重要性。对于数据库系统来说,安全性不仅仅是防止外部攻击,也包括对内部数据的保护。诸如不当的数据访问、数据泄露以及数据篡改等问题,成为了企业面临的严峻挑战。为此,合理的安全管理制度、控制措施以及规范的数据处理流程变得尤为重要。YashanDB数据库凭借其多层次的安全机制,能够有效地满足用户对于数据安全的需求。本文将详细探讨如何通过Yashan
- React对于流式数据和非流式数据的处理和优化
香蕉可乐荷包蛋
Reactreact.js前端前端框架
React在处理流式数据和非流式数据时,可以借助其组件模型、状态管理以及React18引入的并发特性来实现高效的数据处理与渲染优化。文章目录一、流式数据(StreamingData)1.定义2.常见来源3.处理方式使用`useState`/`useReducer`管理状态使用`useRef`存储引用(避免重复渲染)自定义Hook封装逻辑使用WebWorker处理复杂计算渲染优化建议二、非流式数据(
- PHP安全编程实践系列(四):密码存储与加密技术深度解析
软考和人工智能学堂
#php程序设计经验phpPHP和MySQLphp安全android
前言密码和数据安全是Web应用最基础的防线。不恰当的密码存储方式或脆弱的加密实现可能导致灾难性的数据泄露。本文将系统性地介绍PHP中的密码安全存储策略、现代加密技术实践以及密钥管理体系,帮助开发者构建真正安全的敏感数据处理方案。一、密码哈希技术1.1密码哈希基础原理安全哈希的核心要求:不可逆性:无法从哈希值恢复原始密码唯一性:相同输入产生相同输出,不同输入产生完全不同输出抗碰撞:难以找到两个不同输
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIlinuxPHPandroid
╔-----------------------------------╗┆
- zookeeper admin 笔记
braveCS
zookeeper
Required Software
1) JDK>=1.6
2)推荐使用ensemble的ZooKeeper(至少3台),并run on separate machines
3)在Yahoo!,zk配置在特定的RHEL boxes里,2个cpu,2G内存,80G硬盘
数据和日志目录
1)数据目录里的文件是zk节点的持久化备份,包括快照和事务日
- Spring配置多个连接池
easterfly
spring
项目中需要同时连接多个数据库的时候,如何才能在需要用到哪个数据库就连接哪个数据库呢?
Spring中有关于dataSource的配置:
<bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource"
&nb
- Mysql
171815164
mysql
例如,你想myuser使用mypassword从任何主机连接到mysql服务器的话。
GRANT ALL PRIVILEGES ON *.* TO 'myuser'@'%'IDENTIFIED BY 'mypassword' WI
TH GRANT OPTION;
如果你想允许用户myuser从ip为192.168.1.6的主机连接到mysql服务器,并使用mypassword作
- CommonDAO(公共/基础DAO)
g21121
DAO
好久没有更新博客了,最近一段时间工作比较忙,所以请见谅,无论你是爱看呢还是爱看呢还是爱看呢,总之或许对你有些帮助。
DAO(Data Access Object)是一个数据访问(顾名思义就是与数据库打交道)接口,DAO一般在业
- 直言有讳
永夜-极光
感悟随笔
1.转载地址:http://blog.csdn.net/jasonblog/article/details/10813313
精华:
“直言有讳”是阿里巴巴提倡的一种观念,而我在此之前并没有很深刻的认识。为什么呢?就好比是读书时候做阅读理解,我喜欢我自己的解读,并不喜欢老师给的意思。在这里也是。我自己坚持的原则是互相尊重,我觉得阿里巴巴很多价值观其实是基本的做人
- 安装CentOS 7 和Win 7后,Win7 引导丢失
随便小屋
centos
一般安装双系统的顺序是先装Win7,然后在安装CentOS,这样CentOS可以引导WIN 7启动。但安装CentOS7后,却找不到Win7 的引导,稍微修改一点东西即可。
一、首先具有root 的权限。
即进入Terminal后输入命令su,然后输入密码即可
二、利用vim编辑器打开/boot/grub2/grub.cfg文件进行修改
v
- Oracle备份与恢复案例
aijuans
oracle
Oracle备份与恢复案例
一. 理解什么是数据库恢复当我们使用一个数据库时,总希望数据库的内容是可靠的、正确的,但由于计算机系统的故障(硬件故障、软件故障、网络故障、进程故障和系统故障)影响数据库系统的操作,影响数据库中数据的正确性,甚至破坏数据库,使数据库中全部或部分数据丢失。因此当发生上述故障后,希望能重构这个完整的数据库,该处理称为数据库恢复。恢复过程大致可以分为复原(Restore)与
- JavaEE开源快速开发平台G4Studio v5.0发布
無為子
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V5.0版本已经正式发布。
访问G4Studio网站
http://www.g4it.org
2013-04-06 发布G4Studio_V5.0版本
功能新增
(1). 新增了调用Oracle存储过程返回游标,并将游标映射为Java List集合对象的标
- Oracle显示根据高考分数模拟录取
百合不是茶
PL/SQL编程oracle例子模拟高考录取学习交流
题目要求:
1,创建student表和result表
2,pl/sql对学生的成绩数据进行处理
3,处理的逻辑是根据每门专业课的最低分线和总分的最低分数线自动的将录取和落选
1,创建student表,和result表
学生信息表;
create table student(
student_id number primary key,--学生id
- 优秀的领导与差劲的领导
bijian1013
领导管理团队
责任
优秀的领导:优秀的领导总是对他所负责的项目担负起责任。如果项目不幸失败了,那么他知道该受责备的人是他自己,并且敢于承认错误。
差劲的领导:差劲的领导觉得这不是他的问题,因此他会想方设法证明是他的团队不行,或是将责任归咎于团队中他不喜欢的那几个成员身上。
努力工作
优秀的领导:团队领导应该是团队成员的榜样。至少,他应该与团队中的其他成员一样努力工作。这仅仅因为他
- js函数在浏览器下的兼容
Bill_chen
jquery浏览器IEDWRext
做前端开发的工程师,少不了要用FF进行测试,纯js函数在不同浏览器下,名称也可能不同。对于IE6和FF,取得下一结点的函数就不尽相同:
IE6:node.nextSibling,对于FF是不能识别的;
FF:node.nextElementSibling,对于IE是不能识别的;
兼容解决方式:var Div = node.nextSibl
- 【JVM四】老年代垃圾回收:吞吐量垃圾收集器(Throughput GC)
bit1129
垃圾回收
吞吐量与用户线程暂停时间
衡量垃圾回收算法优劣的指标有两个:
吞吐量越高,则算法越好
暂停时间越短,则算法越好
首先说明吞吐量和暂停时间的含义。
垃圾回收时,JVM会启动几个特定的GC线程来完成垃圾回收的任务,这些GC线程与应用的用户线程产生竞争关系,共同竞争处理器资源以及CPU的执行时间。GC线程不会对用户带来的任何价值,因此,好的GC应该占
- J2EE监听器和过滤器基础
白糖_
J2EE
Servlet程序由Servlet,Filter和Listener组成,其中监听器用来监听Servlet容器上下文。
监听器通常分三类:基于Servlet上下文的ServletContex监听,基于会话的HttpSession监听和基于请求的ServletRequest监听。
ServletContex监听器
ServletContex又叫application
- 博弈AngularJS讲义(16) - 提供者
boyitech
jsAngularJSapiAngularProvider
Angular框架提供了强大的依赖注入机制,这一切都是有注入器(injector)完成. 注入器会自动实例化服务组件和符合Angular API规则的特殊对象,例如控制器,指令,过滤器动画等。
那注入器怎么知道如何去创建这些特殊的对象呢? Angular提供了5种方式让注入器创建对象,其中最基础的方式就是提供者(provider), 其余四种方式(Value, Fac
- java-写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
bylijinnan
java
public class CommonSubSequence {
/**
* 题目:写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
* 写一个版本算法复杂度O(N^2)和一个O(N) 。
*
* O(N^2):对于a中的每个字符,遍历b中的每个字符,如果相同,则拷贝到新字符串中。
* O(
- sqlserver 2000 无法验证产品密钥
Chen.H
sqlwindowsSQL ServerMicrosoft
在 Service Pack 4 (SP 4), 是运行 Microsoft Windows Server 2003、 Microsoft Windows Storage Server 2003 或 Microsoft Windows 2000 服务器上您尝试安装 Microsoft SQL Server 2000 通过卷许可协议 (VLA) 媒体。 这样做, 收到以下错误信息CD KEY的 SQ
- [新概念武器]气象战争
comsci
气象战争的发动者必须是拥有发射深空航天器能力的国家或者组织....
原因如下:
地球上的气候变化和大气层中的云层涡旋场有密切的关系,而维持一个在大气层某个层次
- oracle 中 rollup、cube、grouping 使用详解
daizj
oraclegroupingrollupcube
oracle 中 rollup、cube、grouping 使用详解 -- 使用oracle 样例表演示 转自namesliu
-- 使用oracle 的样列库,演示 rollup, cube, grouping 的用法与使用场景
--- ROLLUP , 为了理解分组的成员数量,我增加了 分组的计数 COUNT(SAL)
- 技术资料汇总分享
Dead_knight
技术资料汇总 分享
本人汇总的技术资料,分享出来,希望对大家有用。
http://pan.baidu.com/s/1jGr56uE
资料主要包含:
Workflow->工作流相关理论、框架(OSWorkflow、JBPM、Activiti、fireflow...)
Security->java安全相关资料(SSL、SSO、SpringSecurity、Shiro、JAAS...)
Ser
- 初一下学期难记忆单词背诵第一课
dcj3sjt126com
englishword
could 能够
minute 分钟
Tuesday 星期二
February 二月
eighteenth 第十八
listen 听
careful 小心的,仔细的
short 短的
heavy 重的
empty 空的
certainly 当然
carry 携带;搬运
tape 磁带
basket 蓝子
bottle 瓶
juice 汁,果汁
head 头;头部
- 截取视图的图片, 然后分享出去
dcj3sjt126com
OSObjective-C
OS 7 has a new method that allows you to draw a view hierarchy into the current graphics context. This can be used to get an UIImage very fast.
I implemented a category method on UIView to get the vi
- MySql重置密码
fanxiaolong
MySql重置密码
方法一:
在my.ini的[mysqld]字段加入:
skip-grant-tables
重启mysql服务,这时的mysql不需要密码即可登录数据库
然后进入mysql
mysql>use mysql;
mysql>更新 user set password=password('新密码') WHERE User='root';
mysq
- Ehcache(03)——Ehcache中储存缓存的方式
234390216
ehcacheMemoryStoreDiskStore存储驱除策略
Ehcache中储存缓存的方式
目录
1 堆内存(MemoryStore)
1.1 指定可用内存
1.2 驱除策略
1.3 元素过期
2 &nbs
- spring mvc中的@propertysource
jackyrong
spring mvc
在spring mvc中,在配置文件中的东西,可以在java代码中通过注解进行读取了:
@PropertySource 在spring 3.1中开始引入
比如有配置文件
config.properties
mongodb.url=1.2.3.4
mongodb.db=hello
则代码中
@PropertySource(&
- 重学单例模式
lanqiu17
单例Singleton模式
最近在重新学习设计模式,感觉对模式理解更加深刻。觉得有必要记下来。
第一个学的就是单例模式,单例模式估计是最好理解的模式了。它的作用就是防止外部创建实例,保证只有一个实例。
单例模式的常用实现方式有两种,就人们熟知的饱汉式与饥汉式,具体就不多说了。这里说下其他的实现方式
静态内部类方式:
package test.pattern.singleton.statics;
publ
- .NET开源核心运行时,且行且珍惜
netcome
java.net开源
背景
2014年11月12日,ASP.NET之父、微软云计算与企业级产品工程部执行副总裁Scott Guthrie,在Connect全球开发者在线会议上宣布,微软将开源全部.NET核心运行时,并将.NET 扩展为可在 Linux 和 Mac OS 平台上运行。.NET核心运行时将基于MIT开源许可协议发布,其中将包括执行.NET代码所需的一切项目——CLR、JIT编译器、垃圾收集器(GC)和核心
- 使用oscahe缓存技术减少与数据库的频繁交互
Everyday都不同
Web高并发oscahe缓存
此前一直不知道缓存的具体实现,只知道是把数据存储在内存中,以便下次直接从内存中读取。对于缓存的使用也没有概念,觉得缓存技术是一个比较”神秘陌生“的领域。但最近要用到缓存技术,发现还是很有必要一探究竟的。
缓存技术使用背景:一般来说,对于web项目,如果我们要什么数据直接jdbc查库好了,但是在遇到高并发的情形下,不可能每一次都是去查数据库,因为这样在高并发的情形下显得不太合理——
- Spring+Mybatis 手动控制事务
toknowme
mybatis
@Override
public boolean testDelete(String jobCode) throws Exception {
boolean flag = false;
&nbs
- 菜鸟级的android程序员面试时候需要掌握的知识点
xp9802
android
熟悉Android开发架构和API调用
掌握APP适应不同型号手机屏幕开发技巧
熟悉Android下的数据存储
熟练Android Debug Bridge Tool
熟练Eclipse/ADT及相关工具
熟悉Android框架原理及Activity生命周期
熟练进行Android UI布局
熟练使用SQLite数据库;
熟悉Android下网络通信机制,S