打表加暴力搜索 看刘汝佳的代码照着写的
开始的时候想用二维数组表示Polyomino的 但是后面用这个数据结构根本就无法写出公式
看了这边的代码知道选择结构的问题 二维数组可变性实在太小了(但是确实很好表达逃)
那用结构题刷过的这种题好像是uva1601把 刚开始也是用结构体洋洋洒洒写了一个晚上 后面发现不仅慢还有错。。。(因为没有用二进制表示坐标。。。。。。)
代码就不写注释了。。。因为实在很裸。。。。
#include
#include
#include
#include
#include
using namespace std;
const int N = 10;
int ans[N+1][N+1][N+1];
int n, w, h;
struct Cell{
int x,y;
Cell(int xx = 0, int yy = 0) : x(xx), y(yy){
}
bool operator < (const Cell& rhs) const {
return x < rhs.x || (x == rhs.x && y < rhs.y);
}
};
typedef set Polyomino;
typedef set Polys;
Polys polysnum[N+1];
const int dx[] = {1,-1,0,0};
const int dy[] = {0,0,1,-1};
Polyomino normalize(const Polyomino& p){
Polyomino newp;
int minX = (p.begin())->x;
int minY = (p.begin())->y;
for( Polyomino::const_iterator i = p.begin(); i != p.end(); i++){
minX = min(minX, i->x);
minY = min(minY, i->y);
}
for( Polyomino::iterator i = p.begin(); i != p.end(); i++){
newp.insert(Cell( i->x - minX, i->y - minY ));
}
return newp;
}
Polyomino rotate(const Polyomino& p){
Polyomino newp;
for( Polyomino::iterator i = p.begin(); i != p.end(); i++){
newp.insert(Cell( i->y, -i->x ));
}
return normalize(newp);
}
Polyomino flip(const Polyomino& p){
Polyomino newp;
for( Polyomino::iterator i = p.begin(); i != p.end(); i++){
newp.insert(Cell( i->x, -i->y ));
}
return normalize(newp);
}
void put_cell(const Polyomino& p, const Cell& newCell){
Polyomino newp = p;
newp.insert( newCell );
newp = normalize(newp);
int nn = newp.size();
for(int i = 0; i < 4; i++){
if(polysnum[nn].count(newp) != 0) return;
newp = rotate(newp);
}
newp = flip(newp);
for(int i = 0; i < 4; i++){
if(polysnum[nn].count(newp) != 0) return;
newp = rotate(newp);
}
polysnum[nn].insert(newp);
}
void generate(){
Polyomino p;
p.insert(Cell(0,0));
polysnum[1].insert(p);
for(int k = 2; k <= N; k++){
for(Polys::iterator iter_polys = (polysnum[k-1]).begin(); iter_polys != (polysnum[k-1]).end(); iter_polys++){
for(Polyomino::iterator iter_cells = (*iter_polys).begin(); iter_cells != (*iter_polys).end(); iter_cells++){
for(int dir = 0; dir < 4; dir++){
Cell newCell( iter_cells->x + dx[dir], iter_cells->y + dy[dir]);
if( iter_polys->count(newCell) == 0 ){
put_cell( *iter_polys, newCell);
}
}
}
}
}
for(int i = 1; i <= N; i++){
for(int j = 1; j <= N; j++){ //w
for(int k = 1; k <= N; k++){ //h
//cout<<"n "<x);
maxY = max(maxY, iter_cells->y);
}
if(min(maxX, maxY) < min(j, k) && max(maxX, maxY) < max(j, k)){
cnt++;
//cout< |