推挽输出与开漏输出

    LPC900系列单片机的I/O口特性有一定的不同,它们可以被配置成4种不同的工作模式:准双向I/O、推挽输出、高阻输入、开漏。
    准双向I/O模式与标准80C51相比,虽然在内部结构上是不同的,但在用法上类同,比如要作为输入时都必须先写“1”置成高电平,然后才能去读引脚的电平状态。推挽输出的特点是不论输出高电平还是低电平都能驱动较大的电流,比如输出高电平时可以直接点亮LED(要串联几百欧限流电阻),而在准双向I/O模式下很难办到。高阻输入模式的特点是只能作为输入使用,但是可以获得比较高的输入阻抗,这在模拟比较器和ADC应用中是必需的。开漏模式与准双向模式相似,但是没有内部上拉电阻,输出0时为低电平,输出1时为高阻状态。开漏模式的优点是电气兼容性好,提高输出高电位电压值,如通过电阻接12V,你的高电平就是12V了。,外部上拉电阻接3V电源,就能和3V逻辑器件接口,如果上拉电阻接5V电源,又可以与5V逻辑器件接口。此外,开漏模式还可以方便地实现“线与”逻辑功能。

推挽输出与开漏输出的区别

 推挽输出:可以输出高,低电平,连接数字器件;开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内).
    推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止
    要实现 线与 需要用OC(open collector)门电路.是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小,效率高。输出既可以向负载灌电流,也可以从负载抽取电流。

       开漏电路特点及应用
 
在电路设计时我们常常遇到开漏(open drain)和开集(open collector)的概念。本人虽然在念书时就知道其基本的用法,而且在设计中并未遇的过问题。但是前两天有位同事向我问起了这个概念。我忽然觉得自己对其概念了解的并不系统。近日,忙里偷闲对其进行了下总结。
  所谓开漏电路概念中提到的“漏”就是指MOSFET的漏极。同理,开集电路中的“集”就是指三极管的集电极。开漏电路就是指以MOSFET的漏极为输出的电路。一般的用法是会在漏极外部的电路添加上拉电阻。完整的开漏电路应该由开漏器件和开漏上拉电阻组成。如图1所示:    组成开漏形式的电路有以下几个特点:
 利用 外部电路的驱动能力,减少IC内部的驱动。当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up ,MOSFET到GND。IC内部仅需很下的栅极驱动电流。如图1。2. 可以将多个开漏输出的Pin,连接到一条线上。形成 “与逻辑” 关系。如图1,当PIN_A、PIN_B、PIN_C任意一个变低后,开漏线上的逻辑就为0了。这也是I2C,SMBus等总线判断总线占用状态的原理。
可以利用改变上拉电源的电压,改变传输电平。如图2, IC的逻辑电平由电源Vcc1决定,而输出高电平则由Vcc2决定。这样我们就可以用低电平逻辑控制输出高电平逻辑了。
开漏Pin不连接外部的上拉电阻,则只能输出低电平(因此对于经典的51单片机的P0口而言,要想做输入输出功能必须加外部上拉电阻,否则无法输出高电平逻辑)。5. 标准的开漏脚一般只有输出的能力。添加其它的判断电路,才能具备双向输入、输出的能力1.   开漏和开集的原理类似,在许多应用中我们利用开集电路代替开漏电路。例如,某输入Pin要求由开漏电路驱动。则我们常见的驱动方式是利用一个三极管组成开集电路来驱动它,即方便又节省成本。如图3。2.  上拉电阻R pull-up的  阻值  决定了  逻辑电平转换的沿的速度  。阻值越大,速度越低功耗越小。反之亦然。

Push-Pull输出就是一般所说的推挽输出,在CMOS电路里面应该较CMOS输出更合适,应为在CMOS里面的push-pull输出能力不可能做得双极那么大。输出能力看IC内部输出极N管P管的面积。和开漏输出相比,push-pull的高低电平由IC的电源低定,不能简单的做逻辑操作等。push-pull是现在CMOS电路里面用得最多的输出级设计方式。at91rm9200 GPIO 模拟I2C接口时注意!

你可能感兴趣的:(硬件)