「MICCAI 2018」Reading Notes

QQ Group: 428014259
Sina Weibo:小锋子Shawn
Tencent E-mail:[email protected]
http://blog.csdn.net/dgyuanshaofeng/article/details/82902023

一、图像质量和伪影(Image Quality and Artefacts)

Efficient and Accurate MRI Super-Resolution Using a Generative Adversarial Network and 3D Multi-level Densely Connected Network
P1 pp91
MRI图像超分,GAN和密集连接网络。

High Frame-Rate Cardiac Ultrasound Imaging with Deep Learning
Part1, pp. 126-134
深度学习加速超声成像

二、图像重建方法(Image Reconstruction Methods)

Automatic View Planning with Multi-scale Deep Reinforcement Learning Agents
P1 pp277
标准切面搜索,深度强化学习

Real Time RNN Based 3D Ultrasound Scan Adequacy for Developmental Dysplasia of the Hip
Part 1, pp. 365-373
超声髋关节

Direct Reconstruction of Ultrasound Elastography Using an End-to-End Deep Neural Network
Part 1, pp. 374-382

3D Fetal Skull Reconstruction from 2DUS via Deep Conditional Generative Networks
Part 1, pp. 383-391

Standard Plane Detection in 3D Fetal Ultrasound Using an Iterative Transformation Network
Part 1, pp. 392-00
三维胎儿超声标准切面检测

三、医学影像中的机器学习(Machine Learning in Medical Imaging)

Concurrent Spatial and Channel ‘Squeeze & Excitation’ in Fully Convolutional Networks
P1 pp421
挤压-激活网络SENet的应用

Fast Multiple Landmark Localisation Using a Patch-Based Iterative Network
Part 1 pp. 563-571
快速多关键点定位

四、医学影像中的统计分析(Statistical Analysis for Medical Imaging)

五、图像配准方法(Image Registration Methods)

Adversarial Deformation Regularization for Training Image Registration Neural Networks
Part 1 pp. 774-782

Initialize Globally Before Acting Locally: Enabling Landmark-Free 3D US to MRI Registration
Part 1 pp. 827-835

Multi-task SonoEyeNet: Detection of Fetal Standardized Planes Assisted by Generated Sonographer Attention Maps
Part 1 pp. 871-879

六、光学和组织学应用:光学成像应用(Optical and Histology Applications: Optical Imaging Applications)

Instance Segmentation and Tracking with Cosine Embeddings and Recurrent Hourglass Networks
P2 pp3
实例分割,Cosine嵌入,循环沙漏网络RHN

A Pixel-Wise Distance Regression Approach for Joint Retinal Optical Disc and Fovea Detection
P2 pp39

七、光学和组织学应用:组织学应用(Optical and Histology Applications: Histology Applications)

A Deep Model with Shape-Preserving Loss for Gland Instance Segmentation
P2 pp138

七、光学和组织学应用:显微镜学应用(Optical and Histology Applications: Microscopy Applications)

八、光学和组织学应用:光学相干断层摄影和其它光学成像应用(Optical and Histology Applications: Optical Coherence Tomography and Other Optical Imaging Applications)

九、心脏,肺部和腹部应用:心脏成像应用(Cardiac,Chest and Abdominal Applications: Cardiac Imaging Applications)

More Knowledge Is Better: Cross-Modality Volume Completion and 3D+2D Segmentation for Intracardiac Echocardiography Contouring
Part 2, pp. 535-543

Unsupervised Domain Adaptation for Automatic Estimation of Cardiothoracic Ratio
P2 pp544
无监督域适配

十、心脏,肺部和腹部应用:结直肠,肾脏和肝脏成像应用(Cardiac,Chest and Abdominal Applications: Colorectal, Kidney and Liver Imaging Applications)

Less is More: Simultaneous View Classification and Landmark Detection for Abdominal Ultrasound Images
Part 2 pp. 711-719

十一、心脏,肺部和腹部应用:肺部成像应用(Cardiac,Chest and Abdominal Applications: Lung Imaging Applications)

Tumor-Aware, Adversarial Domain Adaptation from CT to MRI for Lung Cancer Segmentation
P2 pp777
对抗域适配

十二、心脏,肺部和腹部应用:乳腺成像应用(Cardiac,Chest and Abdominal Applications: Breast Imaging Applications)

Integrate Domain Knowledge in Training CNN for Ultrasonography Breast Cancer Diagnosis
Part 2, pp. 868-875

十三、心脏,肺部和腹部应用:其他腹部应用(Cardiac,Chest and Abdominal Applications: Other Abdominal Applications)

AutoDVT: Joint Real-Time Classification for Vein Compressibility Analysis in Deep Vein Thrombosis Ultrasound Diagnostics
Part 2, pp. 905-912

Automatic Lacunae Localization in Placental Ultrasound Images via Layer Aggregation
Part 2, pp. 921-929

Direct Automated Quantitative Measurement of Spine via Cascade Amplifier Regression Network
Part 2, pp. 940-948
级联放大器回归网络

十四、扩散张量成像和功能MRI:扩散张量成像(Diffusion Tensor Imaing and Funtional MRI: Diffusion Tensor Imaging)

十五、扩散张量成像和功能MRI:扩散加权成像(Diffusion Tensor Imaing and Funtional MRI: Diffusion Weighted Imaging)

十六、扩散张量成像和功能MRI:功能MRI(Diffusion Tensor Imaing and Funtional MRI: Funtional MRI)

无。

十七、扩散张量成像和功能MRI:人类连接(Diffusion Tensor Imaing and Funtional MRI: Human Connectome)

无。

神经成像和脑部分割方法:神经成像(Neuroimaging and Brain Segmentation Mehtods: Neuroimaging)

Dilatation of Lateral Ventricles with Brain Volumes in Infants with 3D Transfontanelle US
Part 3, pp. 557-565

十八、神经成像和脑部分割方法:脑部分割方法(Neuroimaging and Brain Segmentation Mehtods: Brain Segmentation Methods)

这一节,文章很多,关于脑部分割和肿瘤分割。

Semi-supervised Learning for Segmentation Under Semantic Constraint
P3 pp595

3D Segmentation with Exponential Logarithmic Loss for Highly Unbalanced Object Sizes
P3 pp612
指数对数损失

十九、计算机辅助介入:图像引导介入和手术(Computer Assisted Interventions: Image Guided Interventions and Surgery)

Learning from Noisy Label Statistics: Detecting High Grade Prostate Cancer in Ultrasound Guided Biopsy
Part 4, pp. 21-29

A Feature-Driven Active Framework for Ultrasound-Based Brain Shift Compensation
Part 4, pp. 30-38

X-ray-transform Invariant Anatomical Landmark Detection for Pelvic Trauma Surgery
P4 pp55

Simultaneous Segmentation and Classificatin of Bone Surfaces from Ultrasound Using a Multi-feature Guided CNN
Part 4, pp. 134-142

Deep Adversarial Context-Aware Landmark Detection for Ultrasound Imaging
Part 4, pp. 151-158

二十、计算机辅助介入:手术规划,模拟仿真和工作流分析(Computer Assisted Interventions: Surgical Planning, Simulation and Work Flow Analysis)

无。

二十一、计算机辅助介入:可视化和增强现实(Computer Assisted Interventions: Visualization and Augmented Reality)

Framework for Fusion of Data- and Model-Based Approaches for Ultrasound Simulation
Part 4, pp. 332-339

二十二、图像分割方法:通用分割方法,测量和应用(Image Segmentation Methods: General Image Segmentation Methods, Measures and Applications)

MS-Net: Mixed-Supervision Fully-Convolutional Networks for Full-Resolution Segmentation
P4 pp379

二十三、图像分割方法:多器官分割(Image Segmentation Methods: Multi-organ Segmentation)

A Multi-scale Pyramid of 3D Fully Convolutional Networks for Abdominal Multi-organ Segmentation
P4 pp417

3D U-JAPA-Net: Mixture of Convolutional Networks for Abdominal Multi-organ CT Segmentation
P4 pp426

二十四、图像分割方法:腹部分割方法(Image Segmentation Methods: Abdominal Segmentation Methods)

Segmentation of Renal Structures for Image-Guided Surgery
P4 pp454

Generalizing Deep Models for Ultrasound Image Segmentation
Part 4, pp. 497-505

二十五、图像分割方法:心脏分割方法(Image Segmentation Methods: Cardiac Segmentation Methods)

Deep Attentional Features for Prostate Segmentation in Ultrasound
Part 4, pp. 523-530

Bayesian VoxDRN: A Probabilistic Deep Voxelwise Dilated Residual Network for Whole Heart Segmentation from 3D MR Images
P4 pp569

Recurrent Neural Networks for Aortic Image Sequence Segmentation with Sparse Annotations
P4 pp586

二十六、图像分割方法:胸部,肺部和脊椎分割(Image Segmentation Methods: Chest,Lung and Spine Segmentation)

Densely Deep Supervised Networks with Threshold Loss for Cancer Detection in Automated Breast Ultrasound
Part 4, pp. 641-648

Btrfly Net: Vertebrae Labelling with Energy-Based Adversarial Learning of Local Spine Prior
Part 4, pp. 649-657

二十七、图像分割方法:其它分割应用(Image Segmentation Methods: Other Segmentation Applications)

Fast Vessel Segmentation and Tracking in Ultra High-Frequency Ultrasound Images
Part 4, pp. 746-754

Deep Reinforcement Learning for Vessel Centerline Tracing in Multi-modality 3D Volumes
Part 4, pp. 755-763

分割任务还是被广泛研究。另外,MR功能成像方面,我还没有关注过。

你可能感兴趣的:(「MICCAI 2018」Reading Notes)