最近研究hmm, 然后想说看看网上写好的代码,结果还有bug~~~我也是醉醉低~~~~
自己稍微改了改,然后把代码贴到这里好了, 感觉囧囧的~~~
之后还会写写自己对这个算法的体验,感觉这个算法确实很有用~~怪说不得翻几本书都能看到它的存在~~~
HMM 代码
# -*- coding: utf-8 -*-
# Copyright (c) 2012, Chi-En Wu
from itertools import izip
from math import log
def _normalize_prob(prob, item_set):
result = {}
if prob is None:
number = len(item_set)
for item in item_set:
result[item] = 1.0 / number
else:
prob_sum = 0.0
for item in item_set:
prob_sum += prob.get(item, 0)
if prob_sum > 0:
for item in item_set:
result[item] = prob.get(item, 0) / prob_sum
else:
for item in item_set:
result[item] = 0
return result
def _normalize_prob_two_dim(prob, item_set1, item_set2):
result = {}
if prob is None:
for item in item_set1:
result[item] = _normalize_prob(None, item_set2)
else:
for item in item_set1:
result[item] = _normalize_prob(prob.get(item), item_set2)
return result
def _count(item, count):
if item not in count:
count[item] = 0
count[item] += 1
def _count_two_dim(item1, item2, count):
if item1 not in count:
count[item1] = {}
_count(item2, count[item1])
def _get_init_model(sequences):
symbol_count = {}
state_count = {}
state_symbol_count = {}
state_start_count = {}
state_trans_count = {}
for state_list, symbol_list in sequences:
pre_state = None
for state, symbol in izip(state_list, symbol_list):
_count(state, state_count)
_count(symbol, symbol_count)
_count_two_dim(state, symbol, state_symbol_count)
if pre_state is None:
_count(state, state_start_count)
else:
_count_two_dim(pre_state, state, state_trans_count)
pre_state = state
return Model(state_count.keys(), symbol_count.keys(),
state_start_count, state_trans_count, state_symbol_count)
def train(sequences, delta=0.0001, smoothing=0):
"""
Use the given sequences to train a HMM model.
This method is an implementation of the `EM algorithm
`_.
The `delta` argument (which is defaults to 0.0001) specifies that the
learning algorithm will stop when the difference of the log-likelihood
between two consecutive iterations is less than delta.
The `smoothing` argument is used to avoid zero probability,
see :py:meth:`~hmm.Model.learn`.
"""
model = _get_init_model(sequences)
length = len(sequences)
old_likelihood = 0
for _, symbol_list in sequences:
old_likelihood += log(model.evaluate(symbol_list))
old_likelihood /= length
while True:
new_likelihood = 0
for _, symbol_list in sequences:
model.learn(symbol_list, smoothing)
new_likelihood += log(model.evaluate(symbol_list))
new_likelihood /= length
if abs(new_likelihood - old_likelihood) < delta:
break
old_likelihood = new_likelihood
return model
class Model(object):
"""
This class is an implementation of the Hidden Markov Model.
The instance of this class can be created by passing the given states,
symbols and optional probability matrices.
If any of the probability matrices are not given, the missing matrics
will be set to the initial uniform probability.
"""
def __init__(self, states, symbols, start_prob=None, trans_prob=None, emit_prob=None):
self._states = set(states)
self._symbols = set(symbols)
self._start_prob = _normalize_prob(start_prob, self._states)
self._trans_prob = _normalize_prob_two_dim(trans_prob, self._states, self._states)
self._emit_prob = _normalize_prob_two_dim(emit_prob, self._states, self._symbols)
def __repr__(self):
return '{name}({_states}, {_symbols}, {_start_prob}, {_trans_prob}, {_emit_prob})' \
.format(name=self.__class__.__name__, **self.__dict__)
def states(self):
""" Return the state set of this model. """
return set(self._states)
def states_number(self):
""" Return the number of states. """
return len(self._states)
def symbols(self):
""" Return the symbol set of this model. """
return set(self._symbols)
def symbols_number(self):
""" Return the number of symbols. """
return len(self._symbols)
def start_prob(self, state):
"""
Return the start probability of the given state.
If `state` is not contained in the state set of this model, 0 is returned.
"""
if state not in self._states:
return 0
return self._start_prob[state]
def trans_prob(self, state_from, state_to):
"""
Return the probability that transition from state `state_from` to
state `state_to`.
If either the `state_from` or the `state_to` are not contained in the
state set of this model, 0 is returned.
"""
if state_from not in self._states or state_to not in self._states:
return 0
return self._trans_prob[state_from][state_to]
def emit_prob(self, state, symbol):
"""
Return the emission probability for `symbol` associated with the `state`.
If either the `state` or the `symbol` are not contained in this model,
0 is returned.
"""
if state not in self._states or symbol not in self._symbols:
return 0
return self._emit_prob[state][symbol]
def _forward(self, sequence):
sequence_length = len(sequence)
if sequence_length == 0:
return []
alpha = [{}]
for state in self._states:
alpha[0][state] = self.start_prob(state) * self.emit_prob(state, sequence[0])
for index in xrange(1, sequence_length):
alpha.append({})
for state_to in self._states:
prob = 0
for state_from in self._states:
prob += alpha[index - 1][state_from] * \
self.trans_prob(state_from, state_to)
alpha[index][state_to] = prob * self.emit_prob(state_to, sequence[index])
return alpha
def backward(self, sequence):
sequence_length = len(sequence)
if sequence_length == 0:
return []
beta = [{}]
for state in self._states:
beta[0][state] = 1
for index in xrange(sequence_length - 1, 0, -1):
beta.insert(0, {})
for state_from in self._states:
prob = 0
for state_to in self._states:
prob += beta[1][state_from] * \
self.trans_prob(state_from, state_to) * \
self.emit_prob(state_to, sequence[index])
beta[0][state_from] = prob
return beta
def evaluate(self, sequence):
"""
Use the `forward algorithm
`_
to evaluate the given sequence.
"""
length = len(sequence)
if length == 0:
return 0
prob = 0
alpha = self._forward(sequence)
for state in alpha[length - 1]:
prob += alpha[length - 1][state]
return prob
def decode(self, sequence):
"""
Decode the given sequence.
This method is an implementation of the
`Viterbi algorithm `_.
"""
sequence_length = len(sequence)
if sequence_length == 0:
return []
delta = {}
for state in self._states:
delta[state] = self.start_prob(state) * self.emit_prob(state, sequence[0])
pre = []
for index in xrange(1, sequence_length):
delta_bar = {}
pre_state = {}
for state_to in self._states:
max_prob = 0
max_state = None
for state_from in self._states:
prob = delta[state_from] * self.trans_prob(state_from, state_to)
if prob > max_prob:
max_prob = prob
max_state = state_from
delta_bar[state_to] = max_prob * self.emit_prob(state_to, sequence[index])
pre_state[state_to] = max_state
delta = delta_bar
pre.append(pre_state)
max_state = None
max_prob = 0
for state in self._states:
if delta[state] > max_prob:
max_prob = delta[state]
max_state = state
if max_state is None:
return []
result = [max_state]
for index in xrange(sequence_length - 1, 0, -1):
max_state = pre[index - 1][max_state]
result.insert(0, max_state)
return result
def learn(self, sequence, smoothing=0):
"""
Use the given `sequence` to find the best state transition and
emission probabilities.
The optional `smoothing` argument (which is defaults to 0) is the
smoothing parameter of the
`additive smoothing `_
to avoid zero probability.
"""
length = len(sequence)
alpha = self._forward(sequence)
beta = self.backward(sequence)
gamma = []
for index in xrange(length):
prob_sum = 0
gamma.append({})
for state in self._states:
prob = alpha[index][state] * beta[index][state]
gamma[index][state] = prob
prob_sum += prob
if prob_sum == 0:
continue
for state in self._states:
gamma[index][state] /= prob_sum
xi = []
for index in xrange(length - 1):
prob_sum = 0
xi.append({})
for state_from in self._states:
xi[index][state_from] = {}
for state_to in self._states:
prob = alpha[index][state_from] * beta[index + 1][state_to] * \
self.trans_prob(state_from, state_to) * \
self.emit_prob(state_to, sequence[index + 1])
xi[index][state_from][state_to] = prob
prob_sum += prob
if prob_sum == 0:
continue
for state_from in self._states:
for state_to in self._states:
xi[index][state_from][state_to] /= prob_sum
states_number = len(self._states)
symbols_number = len(self._symbols)
for state in self._states:
# update start probability
self._start_prob[state] = \
(smoothing + gamma[0][state]) / (1 + states_number * smoothing)
# update transition probability
gamma_sum = 0
for index in xrange(length - 1):
gamma_sum += gamma[index][state]
if gamma_sum > 0:
denominator = gamma_sum + states_number * smoothing
for state_to in self._states:
xi_sum = 0
for index in xrange(length - 1):
xi_sum += xi[index][state][state_to]
self._trans_prob[state][state_to] = (smoothing + xi_sum) / denominator
else:
for state_to in self._states:
self._trans_prob[state][state_to] = 0
# update emission probability
gamma_sum += gamma[length - 1][state]
emit_gamma_sum = {}
for symbol in self._symbols:
emit_gamma_sum[symbol] = 0
for index in xrange(length):
emit_gamma_sum[sequence[index]] += gamma[index][state]
if gamma_sum > 0:
denominator = gamma_sum + symbols_number * smoothing
for symbol in self._symbols:
self._emit_prob[state][symbol] = \
(smoothing + emit_gamma_sum[symbol]) / denominator
else:
for symbol in self._symbols:
self._emit_prob[state][symbol] = 0
hmm 建立模型以及相关的转移矩阵,矩阵状态,混淆矩阵,初始矩阵的初始化
states = ('box1', 'box2', 'box3');
symbols = ('red', 'white');
start_prob = {
'box1' : 0.2,
'box2' : 0.4,
'box3': 0.4
}
trans_prob = {
'box1': { 'box1' : 0.5, 'box2' : 0.2, 'box3' : 0.3},
'box2': { 'box1' : 0.3, 'box2' : 0.5, 'box3' : 0.2},
'box3': { 'box1' : 0.2, 'box2' : 0.3, 'box3' : 0.5}
}
emit_prob = {
'box1': { 'red' : 0.5, 'white': 0.5},
'box2': { 'red' : 0.4, 'white': 0.6},
'box3': { 'red' : 0.7, 'white':0.3}
}
sequence = ['red', 'white', 'red', 'white']
model = hmm.Model(states, symbols, start_prob, trans_prob, emit_prob);
print model.evaluate(sequence)
beta = model.backward(sequence);
prob = 0;
length = len(sequence);
for state in beta[0]:
prob += beta[0][state] * model.emit_prob(state, sequence[0]) * start_prob[state];
print prob;
print model.decode(sequence)