二维傅里叶变换

二维傅里叶变换
第一种做法是拆成一维的做。

#include 
#include 
#include 
using namespace std;
const int N  = 1000;
const double PI = acos(-1);
int a[N][N], b[N][N], c[N][N], fftc[N][N];
int vec_a[N * N], vec_b[N * N], vec_c[N * N];


struct complex
{
    double r,i;
    complex(double _r = 0.0,double _i = 0.0)
    {
        r = _r; i = _i;
    }
    complex operator +(const complex &b)
    {
        return complex(r+b.r,i+b.i);
    }
    complex operator -(const complex &b)
    {
        return complex(r-b.r,i-b.i);
    }
    complex operator *(const complex &b)
    {
        return complex(r*b.r-i*b.i,r*b.i+i*b.r);
    }
}A[N*N],B[N*N];

void change(complex y[],int len)
{
    int i,j,k;
    for(i = 1, j = len/2;i < len-1; i++)
    {
        if(i < j)swap(y[i],y[j]);
        k = len/2;
        while( j >= k)
        {
            j -= k;
            k /= 2;
        }
        if(j < k) j += k;
    }
}

void FFT(complex y[],int len,int on)
{
    change(y,len);
    for(int h = 2; h <= len; h <<= 1)
    {
        complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
        for(int j = 0;j < len;j+=h)
        {
            complex w(1,0);
            for(int k = j;k < j+h/2;k++)
            {
                complex u = y[k];
                complex t = w*y[k+h/2];
                y[k] = u+t;
                y[k+h/2] = u-t;
                w = w*wn;
            }
        }
    }
    if(on == -1)
        for(int i = 0;i < len;i++)
            y[i].r /= len;
}
int main()
{
    //freopen("../in.txt", "r", stdin);
    int n, m, fn, fm, T;
    cin >> T;
    while(T--) {
        cin >> n >> m;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                cin >> a[i][j];
            }
        }
        cin >> fn >> fm;
        for (int i = 0; i < fn; i++) {
            for (int j = 0; j < fm; j++) {
                cin >> b[i][j];
            }
        }
        if(n == 0 || m == 0 || fn == 0 || fm == 0) continue;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (i + fn - 1 >= n || j + fm - 1 >= m) continue;
                int sum = 0;
                for (int x = 0; x < fn; x++) {
                    for (int y = 0; y < fm; y++) {
                        sum += a[i + x][j + y] * b[x][y];
                    }
                }
                c[i][j] = sum;
            }
        }
        for (int i = 0; i <= n - fn; i++) {
            for (int j = 0; j <= m - fm; j++) {
                cout << c[i][j] << " ";
            }
            cout << endl;
        }
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                vec_a[i * m + j] = a[i][j];
                vec_b[i * m + j] = 0;
            }
        }
        for (int i = 0; i < fn; i++) {
            for (int j = 0; j < fm; j++) {
                vec_b[i * m + j] = b[i][j];
            }
        }
        for (int i = 0; i < n * m; i++) A[i] = complex(vec_a[i], 0);
        reverse(vec_b, vec_b + n * m);
        for (int i = 0; i < n * m; i++) B[i] = complex(vec_b[i], 0);
        int len = 1;
        while (len < 2 * n * m) len <<= 1;
        for (int i = n * m; i < len; i++) A[i] = B[i] = complex(0, 0);
        FFT(A, len, 1);
        FFT(B, len, 1);
        for (int i = 0; i < len; i++) {
            A[i] = A[i] * B[i];
        }
        FFT(A, len, -1);
//    for(int i = 0; i < len; i++) cout << vec_a[i] << " ";
//    cout << endl;
//    for(int i = 0; i < len; i++) cout << vec_b[i] << " ";
//    cout << endl;
        for (int i = 0; i < len; i++) {
            vec_c[i] = A[i].r + 0.5;
            //cout << vec_c[i] << " ";
        }
        cout << endl;
        for (int i = 0; i <= n - fn; i++) {
            for (int j = 0; j <= m - fm; j++) {
                int tmp = n * m - 1 + j + i * m;
                fftc[i][j] = vec_c[tmp];
            }
        }
        for (int i = 0; i <= n - fn; i++) {
            for (int j = 0; j <= m - fm; j++) {
                cout << fftc[i][j] << " ";
            }
            cout << endl;
        }
    }
    return 0;
}

第二种根据二维傅里叶变换公式
[F(u,v)=x=0N1y=0N1f(x,y)ej2πN(ux+vy)] [ F ( u , v ) = ∑ x = 0 N − 1 ∑ y = 0 N − 1 f ( x , y ) e − j 2 π N ( u x + v y ) ]
拆成2次一维傅里叶变换。

#include 
#include 
#include 
using namespace std;
const int N  = 1000;
const double PI = acos(-1);
const double eps = 1e-10;

struct complex
{
    double r,i;
    complex(double _r = 0.0,double _i = 0.0)
    {
        r = _r; i = _i;
    }
    complex operator +(const complex &b)
    {
        return complex(r+b.r,i+b.i);
    }
    complex operator -(const complex &b)
    {
        return complex(r-b.r,i-b.i);
    }
    complex operator *(const complex &b)
    {
        return complex(r*b.r-i*b.i,r*b.i+i*b.r);
    }
    complex operator /(const int b)
    {
        return complex(r / b, i / b);
    }
    void Out(){
        cout << "(" << (r < eps ? 0 : r) << " " << (i < eps ? 0 : i) << ")" << " ";
    }
};

void change(complex y[],int len)
{
    int i,j,k;
    for(i = 1, j = len/2;i < len-1; i++)
    {
        if(i < j)swap(y[i],y[j]);
        k = len/2;
        while( j >= k)
        {
            j -= k;
            k /= 2;
        }
        if(j < k) j += k;
    }
}

void FFT(complex y[],int len,int on)
{
    change(y,len);
    for(int h = 2; h <= len; h <<= 1)
    {
        complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
        for(int j = 0;j < len;j+=h)
        {
            complex w(1,0);
            for(int k = j;k < j+h/2;k++)
            {
                complex u = y[k];
                complex t = w*y[k+h/2];
                y[k] = u+t;
                y[k+h/2] = u-t;
                w = w*wn;
            }
        }
    }
    if(on == -1)
        for(int i = 0;i < len;i++)
            y[i] = y[i] / len;
}

void test_FFT(){
    complex A[N * N], B[N * N];
    int a[N], b[N];
    int n;
    cin >> n;
    for(int i = 0; i < n; i++){
        cin >> a[i];
        A[i] = complex(a[i], 0);
    }
    FFT(A, n, 1);
    for(int i = 0; i < n; i++){
        A[i].Out();
    }
    cout << endl;
    for(int i = 0; i < n; i++) b[i] = a[i];
    for(int i = 0; i < n; i++){
        for(int j = 0; j < n; j++){
            complex X(b[j], 0), Y(cos(-2 * PI * i * j / n), sin(-2 * PI * i * j / n));
            B[i] = B[i] + X * Y;
        }
        B[i].Out();
    }
}
int a[N][N], b[N][N], c[N][N], FFT_c[N][N];
complex A[N][N], B[N][N], t[N][N];

int main()
{
    int n, m, fn, fm, T;
    freopen("../in.txt", "r", stdin);
    cin >> T;
    //T = 2;
    while(T--) {
        cin >> n >> m;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                cin >> a[i][j];
            }
        }
        cin >> fn >> fm;
        for (int i = 0; i < fn; i++) {
            for (int j = 0; j < fm; j++) {
                cin >> b[i][j];
            }
        }
        int tmp = max(n, m), len = 1;
        while (len < 2 * tmp) len <<= 1;
        for(int i = 0; i < len; i++){
            for(int j = 0; j < len; j++){
                A[i][j] = B[i][j] = complex(0, 0);
            }
        }
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                A[i][j] = complex(a[i][j], 0);
            }
        }
        for (int i = 0; i < fn; i++) {
            for (int j = 0; j < fm; j++) {
                B[i][j] = complex(b[fn - 1 - i][fm - 1 - j], 0);
            }
        }
//        for(int i = 0; i < len; i++){
//            for(int j = 0; j < len; j++){
//                A[i][j].Out();
//            }
//            cout <
//        }
//        for(int i = 0; i < len; i++){
//            for(int j = 0; j < len; j++){
//                B[i][j].Out();
//            }
//            cout <
//        }
        for (int i = 0; i < len; i++) {
            FFT(A[i], len, 1);
        }
        for (int i = 0; i < len; i++) {
            for (int j = 0; j < len; j++) {
                t[i][j] = A[i][j];
            }
        }
        for (int i = 0; i < len; i++) {
            for (int j = 0; j < len; j++) {
                A[i][j] = t[j][i];
            }
        }
        for (int i = 0; i < len; i++) {
            FFT(A[i], len, 1);
        }
        for (int i = 0; i < len; i++) {
            for (int j = 0; j < len; j++) {
                t[i][j] = A[i][j];
            }
        }
        for (int i = 0; i < len; i++) {
            for (int j = 0; j < len; j++) {
                A[i][j] = t[j][i];
            }
        }
        /////////////////////////////////
        for (int i = 0; i < len; i++) {
            FFT(B[i], len, 1);
        }
        for (int i = 0; i < len; i++) {
            for (int j = 0; j < len; j++) {
                t[i][j] = B[i][j];
            }
        }
        for (int i = 0; i < len; i++) {
            for (int j = 0; j < len; j++) {
                B[i][j] = t[j][i];
            }
        }
        for (int i = 0; i < len; i++) {
            FFT(B[i], len, 1);
        }
        for (int i = 0; i < len; i++) {
            for (int j = 0; j < len; j++) {
                t[i][j] = B[i][j];
            }
        }
        for (int i = 0; i < len; i++) {
            for (int j = 0; j < len; j++) {
                B[i][j] = t[j][i];
            }
        }
        ////////////////
        for (int i = 0; i < len; i++) {
            for (int j = 0; j < len; j++) {
                A[i][j] = A[i][j] * B[i][j];
            }
        }
        ////////////////
        for (int i = 0; i < len; i++) {
            FFT(A[i], len, -1);
        }
        for (int i = 0; i < len; i++) {
            for (int j = 0; j < len; j++) {
                t[i][j] = A[i][j];
            }
        }
        for (int i = 0; i < len; i++) {
            for (int j = 0; j < len; j++) {
                A[i][j] = t[j][i];
            }
        }
        for (int i = 0; i < len; i++) {
            FFT(A[i], len, -1);
        }
        for (int i = 0; i < len; i++) {
            for (int j = 0; j < len; j++) {
                t[i][j] = A[i][j];
            }
        }
        for (int i = 0; i < len; i++) {
            for (int j = 0; j < len; j++) {
                A[i][j] = t[j][i];
            }
        }
        for (int i = 0; i < len; i++) {
            for (int j = 0; j < len; j++) {
                //A[i][j].Out();
                FFT_c[i][j] = A[i][j].r + 0.5;
            }
            //cout << endl;
        }
        /////////////////
        for (int i = 0; i < n + fn - 1; i++) {
            for (int j = 0; j < m + fm - 1; j++) {
                int sum = 0;
                for (int x = 0; x < fn; x++) {
                    for (int y = 0; y < fm; y++) {
                        if (i - x < 0 || j - y < 0 || i - x >= n || j - y >= m ) continue;
                        sum += a[i - x][j - y] * b[fn - 1 - x][fm - 1 - y];
                    }
                }
                c[i][j] = sum;
                //cout << c[i][j] << " ";
            }
            //cout << endl;
        }
        int flag = 0;
        for (int i = 0; i < n + fn - 1; i++) {
            for (int j = 0; j < m + fm - 1; j++) {
                if (c[i][j] != FFT_c[i][j]) {
                    flag = 1;
                }
            }
        }
        if (flag) cout << "No" << endl;
        else cout << "Yes" << endl;
    }
    return 0;
}

你可能感兴趣的:(优化)