CF_400_D

codeforces_400_D

题目大意:给出n扇门,m把钥匙,和没把钥匙可以改变状态(关->开,开->关》)的门的数量及对应编号(保证每个门被两把钥匙控制),现给出n扇门的初始状态(1表示开,0表示关),问是否可以通过这m把钥匙(可用可不用,不一定用完)使得所有的门都开启。
题解:终于看到了2-sat的能想出来的题了,2-sat本质是满族解的判断,这题显然可以用2-sat来求解,求解的一般套路是将每个点拆为两个点,分别表示取或者不取(即一件事的正反两面),最后通过2-sat算法,判断是否可行。这题需要一个转化,即我们对m拆点,表示用或者不用这把钥匙改变对应的门。那么如何连边?可以这样想:对于一个门 的初始状态,如果是开,那么两把钥匙要么都用,要么都不用;如果是关,一定是用一把弃一把。那么就是说连边是要用门的初始状态确定的,那么这题也就解决了。

#pragma comment(linker, "/STACK: 1024000000,1024000000")
#include 
#define pb push_back
#define mp make_pair
#define eb emplace_back
#define em emplace
#define pii pair
#define de(x) cout << #x << " = " << x << endl
#define clr(a,b) memset(a,b,sizeof(a))
#define INF (0x3f3f3f3f)
#define LINF ((long long)(0x3f3f3f3f3f3f3f3f))
#define F first
#define S second
using namespace std;
inline int getint()
{
  int _x=0; char _tc=getchar();
  while(_tc<'0'||_tc>'9') _tc=getchar();
  while(_tc>='0'&&_tc<='9') _x*=10,_x+=(_tc-'0'),_tc=getchar();
  return _x;
}

const int N = 1e5 + 15;
int n, m;
int dor[N];
vector key[N];

struct TwoSet
{
    static const int MAXV = 100100;
    int V, n, tp, S[MAXV<<1];
    vector g[MAXV<<1];
    bool vis[MAXV<<1];
    
    void init( int tt )
    {
        n = tt;
        V = (tt<<1) + 1;
        for ( int i = 1; i <= V; i ++ )
            g[i].clear(), vis[i] = false;
    }
    void addEdge( int x, int y )
    {
        g[x].pb(y);
        g[y].pb(x);
    }
    bool dfs( int x )
    {
        if ( vis[ x > n ? x - n : x + n ] ) return false;
        if ( vis[x] ) return true;
        vis[ S[++tp] = x ] = 1;
        for ( int v : g[x] )
            if ( !dfs(v) ) return false;
        return true;
    }
            
    bool solve()
    {
        for ( int i = 1; i <= n; i ++ )
            if ( !vis[i] && !vis[i+n] )
            {
                tp = 0;
                if ( !dfs(i) )
                {
                    while ( tp ) vis[S[tp--]] = false;
                    if ( !dfs(i+n) ) return false;
                }
            }
        return true;
    }
}TwoSet;

int main()
{
    scanf("%d%d", &n, &m);
    for ( int i = 1; i <= n; i ++ )
        scanf("%d", &dor[i]);
    for ( int i = 1, x; i <= m; i ++ )
    {
        scanf("%d", &x);
        for ( int j = 0, y; j < x; j ++ )
            scanf("%d", &y), key[y].pb(i);
    }
    TwoSet.init(m);
    for ( int i = 1, x, y; i <= n; i ++ )
    {
        x = key[i][0], y = key[i][1];
        if ( !dor[i] )
        {
            TwoSet.addEdge(x,y+m);
            TwoSet.addEdge(x+m,y);
        }
        else
        {
            TwoSet.addEdge(x,y);
            TwoSet.addEdge(x+m,y+m);
        }
    }
    if ( TwoSet.solve() ) puts("YES");
    else puts("NO");
    return 0;
}

你可能感兴趣的:(CF_400_D)