(05)C++ builder之AES加解密

(同一个世界,同一个梦想,交流学习C++Builder XE10,传承c++builder的魅力!欢迎各地朋友加入我的QQ群484979943、860634510、299497712,进群密码“BCB”,同时也请将该群号广为宣传,希望能够广集各方高手,共同进步。如需下载开发工具及源代码请加入我的QQ群)

【阅读倡议】

1、有问题请留言;

2、没问题请点赞;

3、看连载请加群;

4、下源码请加群;

【开发工具】

1、C++Builder10.2.2tokyo

2、两个delphi加解密源代码

本人主笔的国内第一本uniGUI教学资料已诞生,分为cbuilder和delphi两个版本,买代码送手册,需要的朋友可以加入我的QQ技术交流群484979943、860634510、299497712给我(群主)留言。资料简介:https://blog.csdn.net/dlboy2018/article/details/88923832

 

本文将介绍在VCL程序下如何利用BCB混合编译delphi的AES加密算法实现C++下的AES加解密。对于加解密算法常用的有tomcrypt、crypto等,都支持很多主流加密算法,但是使用都有些复杂,而且是引用三方lib库,本文将引入两个delphi加密源代码,混合编译实现AES加密,上手特别简单。(特别说明:本delphi加密代码在VCL项目下运行正常,但是在uniGUI项目下加密正常,解密报错内存不够大)

一、创建一个VCL项目

1、创建一个项目,界面布局如下,保存在d:\testAES下

(05)C++ builder之AES加解密_第1张图片

2、将结尾处AES.pas、ElAES.pas两个delphi源代码文件拷贝到项目主目录d:\testAES下

3、添加上述两个文件到项目中去:Project->Add to project(右下角文件类型选择*.*)

(05)C++ builder之AES加解密_第2张图片

4、编译项目,两个.pas源代码将生成对应的.hpp源代码

(05)C++ builder之AES加解密_第3张图片

5、在主程序UnitMain.cpp文件头中引用生成的两个源代码

#include
#pragma hdrstop
/*自定义*/
#include "AES.hpp"
#include "ElAES.hpp"


#include "UnitMain.h"
//---------------------------------------------------------------------------
#pragma package(smart_init)

#pragma resource "*.dfm"

 

20180604修改:

请将AES.hpp文件的

#include

修改为

#include "ElAES.hpp"

二、主要功能实现

//---------------------------------------------------------------------------


#include
#pragma hdrstop
/*自定义*/
#include "AES.hpp"
#include "ElAES.hpp"


#include "UnitMain.h"
//---------------------------------------------------------------------------
#pragma package(smart_init)
#pragma resource "*.dfm"
TFormMain *FormMain;
//---------------------------------------------------------------------------
__fastcall TFormMain::TFormMain(TComponent* Owner)
: TForm(Owner)
{
}
//---------------------------------------------------------------------------
void __fastcall TFormMain::Button1Click(TObject *Sender)

{

//清空明文输入框

Memo1->Lines->Clear();
}
//---------------------------------------------------------------------------
void __fastcall TFormMain::Button3Click(TObject *Sender)

{

//清空密文输入框

Memo2->Lines->Clear();
}
//---------------------------------------------------------------------------
void __fastcall TFormMain::Button2Click(TObject *Sender)

{

//AES加密

Memo2->Text=EncryptString(Memo1->Text,Edit1->Text);
}
//---------------------------------------------------------------------------
void __fastcall TFormMain::Button4Click(TObject *Sender)

{

//AES解密

Memo1->Text=DecryptString(Memo2->Text,Edit1->Text);
}

//---------------------------------------------------------------------------

三、运行结果

(05)C++ builder之AES加解密_第4张图片

 

运行结果表明,这是一个支持中英文加解密的AES加解密算法,而且解密结果直接转成了16进制,

使用传输都特别方便。本文仅仅试用了字符串加解密,如果你查看两个.pas源代码,你会发现本

加密程序还支持文件加解密、数据流加解密,功能实在是强大,关键是调用简单。

function EncryptString(Value: AnsiString; Key: AnsiString;
  KeyBit: TKeyBit = kb128): AnsiString;
function DecryptString(Value: AnsiString; Key: AnsiString;
  KeyBit: TKeyBit = kb128): AnsiString;

function EncryptStream(Src: TStream; Key: AnsiString;
  var Dest: TStream; KeyBit: TKeyBit = kb128): Boolean;
function DecryptStream(Src: TStream; Key: AnsiString;
  var Dest: TStream; KeyBit: TKeyBit = kb128): Boolean;

procedure EncryptFile(SourceFile, DestFile: String;
  Key: AnsiString; KeyBit: TKeyBit = kb128);
procedure DecryptFile(SourceFile, DestFile: String;
  Key: AnsiString; KeyBit: TKeyBit = kb128);

四、两个delphi AES加解密源代码

如果因网页下载格式导致不能正常使用,请到https://download.csdn.net/download/dlboy2018/10425277下载。

1、AES.pas

(**************************************************************)
(*     Advanced Encryption Standard (AES)                     *)
(*     Interface Unit v1.3                                    *)
(*                                                            *)
(*     Copyright (c) 2002 Jorlen Young                        *)
(*                                                            *)
(* 说明:                                                     *)
(*    基于 ElASE.pas 单元封装                                 *)
(*                                                            *)
(*    这是一个 AES 加密算法的标准接口。                       *)
(* 调用示例:                                                 *)
(* if not EncryptStream(src, key, TStream(Dest), keybit) then *)
(*   showmessage('encrypt error');                            *)
(*                                                            *)
(* if not DecryptStream(src, key, TStream(Dest), keybit) then *)
(*   showmessage('encrypt error');                            *)
(*                                                            *)
(* *** 一定要对Dest进行TStream(Dest) ***                      *)
(* ========================================================== *)
(*                                                            *)
(*   支持 128 / 192 / 256 位的密匙                            *)
(*   默认情况下按照 128 位密匙操作                            *)
(*                                                            *)
(**************************************************************)


unit AES;                  


interface


{$IFDEF UNICODE}
  {$WARN IMPLICIT_STRING_CAST OFF} //关闭警告
  {$WARN IMPLICIT_STRING_CAST_LOSS OFF}
{$ENDIF}
uses
  SysUtils, Classes, Math, ElAES;


const
  SDestStreamNotCreated = 'Dest stream not created.';
  SEncryptStreamError = 'Encrypt stream error.';
  SDecryptStreamError = 'Decrypt stream error.';


type
  TKeyBit = (kb128, kb192, kb256);


function StrToHex(Const str: AnsiString): AnsiString;
function HexToStr(const Str: AnsiString): AnsiString;


function EncryptString(Value: AnsiString; Key: AnsiString;
  KeyBit: TKeyBit = kb128): AnsiString;
function DecryptString(Value: AnsiString; Key: AnsiString;
  KeyBit: TKeyBit = kb128): AnsiString;


function EncryptStream(Src: TStream; Key: AnsiString;
  var Dest: TStream; KeyBit: TKeyBit = kb128): Boolean;
function DecryptStream(Src: TStream; Key: AnsiString;
  var Dest: TStream; KeyBit: TKeyBit = kb128): Boolean;


procedure EncryptFile(SourceFile, DestFile: String;
  Key: AnsiString; KeyBit: TKeyBit = kb128);
procedure DecryptFile(SourceFile, DestFile: String;
  Key: AnsiString; KeyBit: TKeyBit = kb128);


implementation


function StrToHex(Const str: Ansistring): Ansistring;
asm
    push ebx
    push esi
    push edi
    test eax,eax
    jz   @@Exit
    mov  esi,edx       //保存edx值,用来产生新字符串的地址
    mov  edi,eax       //保存原字符串
    mov  edx,[eax-4]  //获得字符串长度
    test edx,edx      //检查长度
    je   @@Exit      {Length(S) = 0}
    mov  ecx,edx       //保存长度
    Push ecx
    shl  edx,1
    mov  eax,esi
    {$IFDEF UNICODE}
    movzx ecx, word ptr [edi-12] {需要设置CodePage}
    {$ENDIF}
    call System.@LStrSetLength //设置新串长度
    mov  eax,esi       //新字符串地址
    Call UniqueString  //产生一个唯一的新字符串,串位置在eax中
    Pop   ecx
  @@SetHex:
    xor  edx,edx       //清空edx
    mov  dl, [edi]     //Str字符串字符
    mov  ebx,edx       //保存当前的字符
    shr  edx,4         //右移4字节,得到高8位
    mov  dl,byte ptr[edx+@@HexChar] //转换成字符
    mov  [eax],dl      //将字符串输入到新建串中存放
    and  ebx,$0F       //获得低8位
    mov  dl,byte ptr[ebx+@@HexChar] //转换成字符
    inc  eax             //移动一个字节,存放低位
    mov  [eax],dl
    inc  edi
    inc  eax
    loop @@SetHex
  @@Exit:
    pop  edi
    pop  esi
    pop  ebx
    ret
  @@HexChar: db '0123456789ABCDEF'
end;


function HexToStr(const Str: AnsiString): AnsiString;
asm
  push ebx
  push edi
  push esi
  test eax,eax //为空串
  jz   @@Exit
  mov  edi,eax
  mov  esi,edx
  mov  edx,[eax-4]
  test edx,edx
  je   @@Exit
  mov  ecx,edx
  push ecx
  shr  edx,1
  mov  eax,esi //开始构造字符串
  {$IFDEF UNICODE}
  movzx ecx, word ptr [edi-12] {需要设置CodePage}
  {$ENDIF}
  call System.@LStrSetLength //设置新串长度
  mov  eax,esi       //新字符串地址
  Call UniqueString  //产生一个唯一的新字符串,串位置在eax中
  Pop   ecx
  xor  ebx,ebx
  xor  esi,esi
@@CharFromHex:
  xor  edx,edx
  mov  dl, [edi]     //Str字符串字符
  cmp  dl, '0'  //查看是否在0到f之间的字符
  JB   @@Exit   //小于0,退出
  cmp  dl,'9'   //小于=9
  ja  @@DoChar//CompOkNum
  sub  dl,'0'
  jmp  @@DoConvert
@@DoChar:
  //先转成大写字符
  and  dl,$DF
  cmp  dl,'F'
  ja   @@Exit  //大于F退出
  add  dl,10
  sub  dl,'A'
@@DoConvert: //转化
  inc  ebx
  cmp  ebx,2
  je   @@Num1
  xor  esi,esi
  shl  edx,4
  mov  esi,edx
  jmp  @@Num2
@@Num1:
  add  esi,edx
  mov  edx,esi
  mov  [eax],dl
  xor  ebx,ebx
  inc  eax
@@Num2:
  dec  ecx
  inc  edi
  test ecx,ecx
  jnz  @@CharFromHex
@@Exit:
  pop  esi
  pop  edi
  pop  ebx
end;


{  --  字符串加密函数 默认按照 128 位密匙加密 --  }
function EncryptString(Value: AnsiString; Key: AnsiString;
  KeyBit: TKeyBit = kb128): AnsiString;
var
  {$IFDEF UNICODE}
  SS,DS: TMemoryStream;
  {$ELSE}
  SS, DS: TStringStream;
  {$ENDIF}
  Size: Int64;
  AESKey128: TAESKey128;
  AESKey192: TAESKey192;
  AESKey256: TAESKey256;
  st: AnsiString;
begin
  Result := '';
  {$IFDEF UNICODE}
    ss := TMemoryStream.Create;
    SS.WriteBuffer(PAnsiChar(Value)^,Length(Value));
    DS := TMemoryStream.Create;
  {$ELSE}
    SS := TStringStream.Create(Value);
    DS := TStringStream.Create('');
  {$ENDIF}
  try
    Size := SS.Size;
    DS.WriteBuffer(Size, SizeOf(Size));
    {  --  128 位密匙最大长度为 16 个字符 --  }
    if KeyBit = kb128 then
    begin
      FillChar(AESKey128, SizeOf(AESKey128), 0 );
      Move(PAnsiChar(Key)^, AESKey128, Min(SizeOf(AESKey128), Length(Key)));
      EncryptAESStreamECB(SS, 0, AESKey128, DS);
    end;
    {  --  192 位密匙最大长度为 24 个字符 --  }
    if KeyBit = kb192 then
    begin
      FillChar(AESKey192, SizeOf(AESKey192), 0 );
      Move(PAnsiChar(Key)^, AESKey192, Min(SizeOf(AESKey192), Length(Key)));
      EncryptAESStreamECB(SS, 0, AESKey192, DS);
    end;
    {  --  256 位密匙最大长度为 32 个字符 --  }
    if KeyBit = kb256 then
    begin
      FillChar(AESKey256, SizeOf(AESKey256), 0 );
      Move(PAnsiChar(Key)^, AESKey256, Min(SizeOf(AESKey256), Length(Key)));
      EncryptAESStreamECB(SS, 0, AESKey256, DS);
    end;
    {$IFDEF UNICODE}
      SetLength(st,Ds.Size);
      DS.Position := 0;
      DS.ReadBuffer(PAnsiChar(st)^,DS.Size);
      Result := StrToHex(st);
    {$ELSE}
      Result := StrToHex(DS.DataString);
    {$ENDIF}
  finally
    SS.Free;
    DS.Free;
  end;
end;


{  --  字符串解密函数 默认按照 128 位密匙解密 --  }
function DecryptString(Value: AnsiString; Key: AnsiString;
  KeyBit: TKeyBit = kb128): AnsiString;
var
  SS, DS: TStringStream;
  Size: Int64;
  AESKey128: TAESKey128;
  AESKey192: TAESKey192;
  AESKey256: TAESKey256;
begin
  Result := '';
  SS := TStringStream.Create(HexToStr(Value));
  DS := TStringStream.Create('');
  try
    Size := SS.Size;
    SS.ReadBuffer(Size, SizeOf(Size));
    {  --  128 位密匙最大长度为 16 个字符 --  }
    if KeyBit = kb128 then
    begin
      FillChar(AESKey128, SizeOf(AESKey128), 0 );
      Move(PAnsiChar(Key)^, AESKey128, Min(SizeOf(AESKey128), Length(Key)));
      DecryptAESStreamECB(SS, SS.Size - SS.Position, AESKey128, DS);
    end;
    {  --  192 位密匙最大长度为 24 个字符 --  }
    if KeyBit = kb192 then
    begin
      FillChar(AESKey192, SizeOf(AESKey192), 0 );
      Move(PAnsiChar(Key)^, AESKey192, Min(SizeOf(AESKey192), Length(Key)));
      DecryptAESStreamECB(SS, SS.Size - SS.Position, AESKey192, DS);
    end;
    {  --  256 位密匙最大长度为 32 个字符 --  }
    if KeyBit = kb256 then
    begin
      FillChar(AESKey256, SizeOf(AESKey256), 0 );
      Move(PAnsiChar(Key)^, AESKey256, Min(SizeOf(AESKey256), Length(Key)));
      DecryptAESStreamECB(SS, SS.Size - SS.Position, AESKey256, DS);
    end;
    Result := DS.DataString;
  finally
    SS.Free;
    DS.Free;
  end;
end;


{ 流加密函数, default keybit: 128bit }
function EncryptStream(Src: TStream; Key: AnsiString;
  var Dest: TStream; KeyBit: TKeyBit = kb128): Boolean;
var
  Count: Int64;
  AESKey128: TAESKey128;
  AESKey192: TAESKey192;
  AESKey256: TAESKey256;
begin
  if Dest = nil then
  begin
    raise Exception.Create(SDestStreamNotCreated);
    Result:= False;
    Exit;
  end;


  try
    Src.Position:= 0;
    Count:= Src.Size;
    Dest.Write(Count, SizeOf(Count));
    {  --  128 位密匙最大长度为 16 个字符 --  }
    if KeyBit = kb128 then
    begin
      FillChar(AESKey128, SizeOf(AESKey128), 0 );
      Move(PAnsiChar(Key)^, AESKey128, Min(SizeOf(AESKey128), Length(Key)));
      EncryptAESStreamECB(Src, 0, AESKey128, Dest);
    end;
    {  --  192 位密匙最大长度为 24 个字符 --  }
    if KeyBit = kb192 then
    begin
      FillChar(AESKey192, SizeOf(AESKey192), 0 );
      Move(PAnsiChar(Key)^, AESKey192, Min(SizeOf(AESKey192), Length(Key)));
      EncryptAESStreamECB(Src, 0, AESKey192, Dest);
    end;
    {  --  256 位密匙最大长度为 32 个字符 --  }
    if KeyBit = kb256 then
    begin
      FillChar(AESKey256, SizeOf(AESKey256), 0 );
      Move(PAnsiChar(Key)^, AESKey256, Min(SizeOf(AESKey256), Length(Key)));
      EncryptAESStreamECB(Src, 0, AESKey256, Dest);
    end;


    Result := True;
  except
    raise Exception.Create(SEncryptStreamError);
    Result:= False;
  end;
end;


{ 流解密函数, default keybit: 128bit }
function DecryptStream(Src: TStream; Key: AnsiString;
  var Dest: TStream; KeyBit: TKeyBit = kb128): Boolean;
var
  Count, OutPos: Int64;
  AESKey128: TAESKey128;
  AESKey192: TAESKey192;
  AESKey256: TAESKey256;
begin
  if Dest = nil then
  begin
    raise Exception.Create(SDestStreamNotCreated);
    Result:= False;
    Exit;
  end;


  try
    Src.Position:= 0;
    OutPos:= Dest.Position;
    Src.ReadBuffer(Count, SizeOf(Count));
    {  --  128 位密匙最大长度为 16 个字符 --  }
    if KeyBit = kb128 then
    begin
      FillChar(AESKey128, SizeOf(AESKey128), 0 );
      Move(PAnsiChar(Key)^, AESKey128, Min(SizeOf(AESKey128), Length(Key)));
      DecryptAESStreamECB(Src, Src.Size - Src.Position,
        AESKey128, Dest);
    end;
    {  --  192 位密匙最大长度为 24 个字符 --  }
    if KeyBit = kb192 then
    begin
      FillChar(AESKey192, SizeOf(AESKey192), 0 );
      Move(PAnsiChar(Key)^, AESKey192, Min(SizeOf(AESKey192), Length(Key)));
      DecryptAESStreamECB(Src, Src.Size - Src.Position,
        AESKey192, Dest);
    end;
    {  --  256 位密匙最大长度为 32 个字符 --  }
    if KeyBit = kb256 then
    begin
      FillChar(AESKey256, SizeOf(AESKey256), 0 );
      Move(PAnsiChar(Key)^, AESKey256, Min(SizeOf(AESKey256), Length(Key)));
      DecryptAESStreamECB(Src, Src.Size - Src.Position,
        AESKey256, Dest);
    end;
    Dest.Size := OutPos + Count;
    Dest.Position := OutPos;


    Result := True;
  except
    raise Exception.Create(SDecryptStreamError);
    Result:= False;
  end;
end;


{  --  文件加密函数 默认按照 128 位密匙解密 --  }
procedure EncryptFile(SourceFile, DestFile: String;
  Key: AnsiString; KeyBit: TKeyBit = kb128);
var
  SFS, DFS: TFileStream;
  Size: Int64;
  AESKey128: TAESKey128;
  AESKey192: TAESKey192;
  AESKey256: TAESKey256;
begin
  SFS := TFileStream.Create(SourceFile, fmOpenRead);
  try
    DFS := TFileStream.Create(DestFile, fmCreate);
    try
      Size := SFS.Size;
      DFS.WriteBuffer(Size, SizeOf(Size));
      {  --  128 位密匙最大长度为 16 个字符 --  }
      if KeyBit = kb128 then
      begin
        FillChar(AESKey128, SizeOf(AESKey128), 0 );
        Move(PAnsiChar(Key)^, AESKey128, Min(SizeOf(AESKey128), Length(Key)));
        EncryptAESStreamECB(SFS, 0, AESKey128, DFS);
      end;
      {  --  192 位密匙最大长度为 24 个字符 --  }
      if KeyBit = kb192 then
      begin
        FillChar(AESKey192, SizeOf(AESKey192), 0 );
        Move(PAnsiChar(Key)^, AESKey192, Min(SizeOf(AESKey192), Length(Key)));
        EncryptAESStreamECB(SFS, 0, AESKey192, DFS);
      end;
      {  --  256 位密匙最大长度为 32 个字符 --  }
      if KeyBit = kb256 then
      begin
        FillChar(AESKey256, SizeOf(AESKey256), 0 );
        Move(PAnsiChar(Key)^, AESKey256, Min(SizeOf(AESKey256), Length(Key)));
        EncryptAESStreamECB(SFS, 0, AESKey256, DFS);
      end;
    finally
      DFS.Free;
    end;
  finally
    SFS.Free;
  end;
end;


{  --  文件解密函数 默认按照 128 位密匙解密 --  }
procedure DecryptFile(SourceFile, DestFile: String;
  Key: AnsiString; KeyBit: TKeyBit = kb128);
var
  SFS, DFS: TFileStream;
  Size: Int64;
  AESKey128: TAESKey128;
  AESKey192: TAESKey192;
  AESKey256: TAESKey256;
begin
  SFS := TFileStream.Create(SourceFile, fmOpenRead);
  try
    SFS.ReadBuffer(Size, SizeOf(Size));
    DFS := TFileStream.Create(DestFile, fmCreate);
    try
      {  --  128 位密匙最大长度为 16 个字符 --  }
      if KeyBit = kb128 then
      begin
        FillChar(AESKey128, SizeOf(AESKey128), 0 );
        Move(PAnsiChar(Key)^, AESKey128, Min(SizeOf(AESKey128), Length(Key)));
        DecryptAESStreamECB(SFS, SFS.Size - SFS.Position, AESKey128, DFS);
      end;
      {  --  192 位密匙最大长度为 24 个字符 --  }
      if KeyBit = kb192 then
      begin
        FillChar(AESKey192, SizeOf(AESKey192), 0 );
        Move(PAnsiChar(Key)^, AESKey192, Min(SizeOf(AESKey192), Length(Key)));
        DecryptAESStreamECB(SFS, SFS.Size - SFS.Position, AESKey192, DFS);
      end;
      {  --  256 位密匙最大长度为 32 个字符 --  }
      if KeyBit = kb256 then
      begin
        FillChar(AESKey256, SizeOf(AESKey256), 0 );
        Move(PAnsiChar(Key)^, AESKey256, Min(SizeOf(AESKey256), Length(Key)));
        DecryptAESStreamECB(SFS, SFS.Size - SFS.Position, AESKey256, DFS);
      end;
      DFS.Size := Size;
    finally
      DFS.Free;
    end;
  finally
    SFS.Free;
  end;
end;

end.

2、ElAES.pas

(**************************************************)
(*                                                *)
(*     Advanced Encryption Standard (AES)         *)
(*                                                *)
(*     Copyright (c) 1998-2001                    *)
(*     EldoS, Alexander Ionov                     *)
(*                                                *)
(**************************************************)


unit ElAES;


interface


uses
  Classes, SysUtils;


type
  EAESError = class(Exception);


  PInteger  = ^Integer;


  TAESBuffer = array [0..15] of byte;
  TAESKey128 = array [0..15] of byte;
  TAESKey192 = array [0..23] of byte;
  TAESKey256 = array [0..31] of byte;
  TAESExpandedKey128 = array [0..43] of longword;
  TAESExpandedKey192 = array [0..53] of longword;
  TAESExpandedKey256 = array [0..63] of longword;


  PAESBuffer =^TAESBuffer;
  PAESKey128 =^TAESKey128;
  PAESKey192 =^TAESKey192;
  PAESKey256 =^TAESKey256;
  PAESExpandedKey128 =^TAESExpandedKey128;
  PAESExpandedKey192 =^TAESExpandedKey192;
  PAESExpandedKey256 =^TAESExpandedKey256;


// Key expansion routines for encryption  


procedure ExpandAESKeyForEncryption(const Key: TAESKey128;
  var ExpandedKey: TAESExpandedKey128); overload;
procedure ExpandAESKeyForEncryption(const Key: TAESKey192;
  var ExpandedKey: TAESExpandedKey192); overload;
procedure ExpandAESKeyForEncryption(const Key: TAESKey256;
  var ExpandedKey: TAESExpandedKey256); overload;


// Block encryption routines


procedure EncryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey128;
  var OutBuf: TAESBuffer); overload;
procedure EncryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey192;
  var OutBuf: TAESBuffer); overload;
procedure EncryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey256;
  var OutBuf: TAESBuffer); overload;


// Stream encryption routines (ECB mode)


procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
  const Key: TAESKey128; Dest: TStream); overload;
procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey128; Dest: TStream); overload;


procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
  const Key: TAESKey192; Dest: TStream); overload;
procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey192; Dest: TStream); overload;


procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
  const Key: TAESKey256; Dest: TStream); overload;
procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey256; Dest: TStream); overload;


// Stream encryption routines (CBC mode)


procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
  const Key: TAESKey128; const InitVector: TAESBuffer; Dest: TStream); overload;
procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey128;  const InitVector: TAESBuffer;
  Dest: TStream); overload;


procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
  const Key: TAESKey192; const InitVector: TAESBuffer; Dest: TStream); overload;
procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey192;  const InitVector: TAESBuffer;
  Dest: TStream); overload;


procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
  const Key: TAESKey256; const InitVector: TAESBuffer; Dest: TStream); overload;
procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey256;  const InitVector: TAESBuffer;
  Dest: TStream); overload;


// Key transformation routines for decryption


procedure ExpandAESKeyForDecryption(var ExpandedKey: TAESExpandedKey128); overload;
procedure ExpandAESKeyForDecryption(const Key: TAESKey128;
  var ExpandedKey: TAESExpandedKey128); overload;


procedure ExpandAESKeyForDecryption(var ExpandedKey: TAESExpandedKey192); overload;
procedure ExpandAESKeyForDecryption(const Key: TAESKey192;
  var ExpandedKey: TAESExpandedKey192); overload;


procedure ExpandAESKeyForDecryption(var ExpandedKey: TAESExpandedKey256); overload;
procedure ExpandAESKeyForDecryption(const Key: TAESKey256;
  var ExpandedKey: TAESExpandedKey256); overload;


// Block decryption routines


procedure DecryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey128;
  var OutBuf: TAESBuffer); overload;
procedure DecryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey192;
  var OutBuf: TAESBuffer); overload;
procedure DecryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey256;
  var OutBuf: TAESBuffer); overload;


// Stream decryption routines (ECB mode)


procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
  const Key: TAESKey128; Dest: TStream); overload;
procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey128; Dest: TStream); overload;


procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
  const Key: TAESKey192; Dest: TStream); overload;
procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey192; Dest: TStream); overload;


procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
  const Key: TAESKey256; Dest: TStream); overload;
procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey256; Dest: TStream); overload;


// Stream decryption routines (CBC mode)


procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
  const Key: TAESKey128; const InitVector: TAESBuffer; Dest: TStream); overload;
procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey128;  const InitVector: TAESBuffer;
  Dest: TStream); overload;


procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
  const Key: TAESKey192; const InitVector: TAESBuffer; Dest: TStream); overload;
procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey192;  const InitVector: TAESBuffer;
  Dest: TStream); overload;


procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
  const Key: TAESKey256; const InitVector: TAESBuffer; Dest: TStream); overload;
procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey256;  const InitVector: TAESBuffer;
  Dest: TStream); overload;


resourcestring
  SInvalidInBufSize = 'Invalid buffer size for decryption';
  SReadError = 'Stream read error';
  SWriteError = 'Stream write error';


implementation


type
  PLongWord = ^LongWord;


function Min(A, B: integer): integer;
begin
  if A < B then
    Result := A
  else
    Result := B;
end;


const
  Rcon: array [1..30] of longword = (
    $00000001, $00000002, $00000004, $00000008, $00000010, $00000020,
    $00000040, $00000080, $0000001B, $00000036, $0000006C, $000000D8,
    $000000AB, $0000004D, $0000009A, $0000002F, $0000005E, $000000BC,
    $00000063, $000000C6, $00000097, $00000035, $0000006A, $000000D4,
    $000000B3, $0000007D, $000000FA, $000000EF, $000000C5, $00000091
  );


  ForwardTable: array [0..255] of longword = (
    $A56363C6, $847C7CF8, $997777EE, $8D7B7BF6, $0DF2F2FF, $BD6B6BD6, $B16F6FDE, $54C5C591,
    $50303060, $03010102, $A96767CE, $7D2B2B56, $19FEFEE7, $62D7D7B5, $E6ABAB4D, $9A7676EC,
    $45CACA8F, $9D82821F, $40C9C989, $877D7DFA, $15FAFAEF, $EB5959B2, $C947478E, $0BF0F0FB,
    $ECADAD41, $67D4D4B3, $FDA2A25F, $EAAFAF45, $BF9C9C23, $F7A4A453, $967272E4, $5BC0C09B,
    $C2B7B775, $1CFDFDE1, $AE93933D, $6A26264C, $5A36366C, $413F3F7E, $02F7F7F5, $4FCCCC83,
    $5C343468, $F4A5A551, $34E5E5D1, $08F1F1F9, $937171E2, $73D8D8AB, $53313162, $3F15152A,
    $0C040408, $52C7C795, $65232346, $5EC3C39D, $28181830, $A1969637, $0F05050A, $B59A9A2F,
    $0907070E, $36121224, $9B80801B, $3DE2E2DF, $26EBEBCD, $6927274E, $CDB2B27F, $9F7575EA,
    $1B090912, $9E83831D, $742C2C58, $2E1A1A34, $2D1B1B36, $B26E6EDC, $EE5A5AB4, $FBA0A05B,
    $F65252A4, $4D3B3B76, $61D6D6B7, $CEB3B37D, $7B292952, $3EE3E3DD, $712F2F5E, $97848413,
    $F55353A6, $68D1D1B9, $00000000, $2CEDEDC1, $60202040, $1FFCFCE3, $C8B1B179, $ED5B5BB6,
    $BE6A6AD4, $46CBCB8D, $D9BEBE67, $4B393972, $DE4A4A94, $D44C4C98, $E85858B0, $4ACFCF85,
    $6BD0D0BB, $2AEFEFC5, $E5AAAA4F, $16FBFBED, $C5434386, $D74D4D9A, $55333366, $94858511,
    $CF45458A, $10F9F9E9, $06020204, $817F7FFE, $F05050A0, $443C3C78, $BA9F9F25, $E3A8A84B,
    $F35151A2, $FEA3A35D, $C0404080, $8A8F8F05, $AD92923F, $BC9D9D21, $48383870, $04F5F5F1,
    $DFBCBC63, $C1B6B677, $75DADAAF, $63212142, $30101020, $1AFFFFE5, $0EF3F3FD, $6DD2D2BF,
    $4CCDCD81, $140C0C18, $35131326, $2FECECC3, $E15F5FBE, $A2979735, $CC444488, $3917172E,
    $57C4C493, $F2A7A755, $827E7EFC, $473D3D7A, $AC6464C8, $E75D5DBA, $2B191932, $957373E6,
    $A06060C0, $98818119, $D14F4F9E, $7FDCDCA3, $66222244, $7E2A2A54, $AB90903B, $8388880B,
    $CA46468C, $29EEEEC7, $D3B8B86B, $3C141428, $79DEDEA7, $E25E5EBC, $1D0B0B16, $76DBDBAD,
    $3BE0E0DB, $56323264, $4E3A3A74, $1E0A0A14, $DB494992, $0A06060C, $6C242448, $E45C5CB8,
    $5DC2C29F, $6ED3D3BD, $EFACAC43, $A66262C4, $A8919139, $A4959531, $37E4E4D3, $8B7979F2,
    $32E7E7D5, $43C8C88B, $5937376E, $B76D6DDA, $8C8D8D01, $64D5D5B1, $D24E4E9C, $E0A9A949,
    $B46C6CD8, $FA5656AC, $07F4F4F3, $25EAEACF, $AF6565CA, $8E7A7AF4, $E9AEAE47, $18080810,
    $D5BABA6F, $887878F0, $6F25254A, $722E2E5C, $241C1C38, $F1A6A657, $C7B4B473, $51C6C697,
    $23E8E8CB, $7CDDDDA1, $9C7474E8, $211F1F3E, $DD4B4B96, $DCBDBD61, $868B8B0D, $858A8A0F,
    $907070E0, $423E3E7C, $C4B5B571, $AA6666CC, $D8484890, $05030306, $01F6F6F7, $120E0E1C,
    $A36161C2, $5F35356A, $F95757AE, $D0B9B969, $91868617, $58C1C199, $271D1D3A, $B99E9E27,
    $38E1E1D9, $13F8F8EB, $B398982B, $33111122, $BB6969D2, $70D9D9A9, $898E8E07, $A7949433,
    $B69B9B2D, $221E1E3C, $92878715, $20E9E9C9, $49CECE87, $FF5555AA, $78282850, $7ADFDFA5,
    $8F8C8C03, $F8A1A159, $80898909, $170D0D1A, $DABFBF65, $31E6E6D7, $C6424284, $B86868D0,
    $C3414182, $B0999929, $772D2D5A, $110F0F1E, $CBB0B07B, $FC5454A8, $D6BBBB6D, $3A16162C
  );


  LastForwardTable: array [0..255] of longword = (
    $00000063, $0000007C, $00000077, $0000007B, $000000F2, $0000006B, $0000006F, $000000C5,
    $00000030, $00000001, $00000067, $0000002B, $000000FE, $000000D7, $000000AB, $00000076,
    $000000CA, $00000082, $000000C9, $0000007D, $000000FA, $00000059, $00000047, $000000F0,
    $000000AD, $000000D4, $000000A2, $000000AF, $0000009C, $000000A4, $00000072, $000000C0,
    $000000B7, $000000FD, $00000093, $00000026, $00000036, $0000003F, $000000F7, $000000CC,
    $00000034, $000000A5, $000000E5, $000000F1, $00000071, $000000D8, $00000031, $00000015,
    $00000004, $000000C7, $00000023, $000000C3, $00000018, $00000096, $00000005, $0000009A,
    $00000007, $00000012, $00000080, $000000E2, $000000EB, $00000027, $000000B2, $00000075,
    $00000009, $00000083, $0000002C, $0000001A, $0000001B, $0000006E, $0000005A, $000000A0,
    $00000052, $0000003B, $000000D6, $000000B3, $00000029, $000000E3, $0000002F, $00000084,
    $00000053, $000000D1, $00000000, $000000ED, $00000020, $000000FC, $000000B1, $0000005B,
    $0000006A, $000000CB, $000000BE, $00000039, $0000004A, $0000004C, $00000058, $000000CF,
    $000000D0, $000000EF, $000000AA, $000000FB, $00000043, $0000004D, $00000033, $00000085,
    $00000045, $000000F9, $00000002, $0000007F, $00000050, $0000003C, $0000009F, $000000A8,
    $00000051, $000000A3, $00000040, $0000008F, $00000092, $0000009D, $00000038, $000000F5,
    $000000BC, $000000B6, $000000DA, $00000021, $00000010, $000000FF, $000000F3, $000000D2,
    $000000CD, $0000000C, $00000013, $000000EC, $0000005F, $00000097, $00000044, $00000017,
    $000000C4, $000000A7, $0000007E, $0000003D, $00000064, $0000005D, $00000019, $00000073,
    $00000060, $00000081, $0000004F, $000000DC, $00000022, $0000002A, $00000090, $00000088,
    $00000046, $000000EE, $000000B8, $00000014, $000000DE, $0000005E, $0000000B, $000000DB,
    $000000E0, $00000032, $0000003A, $0000000A, $00000049, $00000006, $00000024, $0000005C,
    $000000C2, $000000D3, $000000AC, $00000062, $00000091, $00000095, $000000E4, $00000079,
    $000000E7, $000000C8, $00000037, $0000006D, $0000008D, $000000D5, $0000004E, $000000A9,
    $0000006C, $00000056, $000000F4, $000000EA, $00000065, $0000007A, $000000AE, $00000008,
    $000000BA, $00000078, $00000025, $0000002E, $0000001C, $000000A6, $000000B4, $000000C6,
    $000000E8, $000000DD, $00000074, $0000001F, $0000004B, $000000BD, $0000008B, $0000008A,
    $00000070, $0000003E, $000000B5, $00000066, $00000048, $00000003, $000000F6, $0000000E,
    $00000061, $00000035, $00000057, $000000B9, $00000086, $000000C1, $0000001D, $0000009E,
    $000000E1, $000000F8, $00000098, $00000011, $00000069, $000000D9, $0000008E, $00000094,
    $0000009B, $0000001E, $00000087, $000000E9, $000000CE, $00000055, $00000028, $000000DF,
    $0000008C, $000000A1, $00000089, $0000000D, $000000BF, $000000E6, $00000042, $00000068,
    $00000041, $00000099, $0000002D, $0000000F, $000000B0, $00000054, $000000BB, $00000016
  );


  InverseTable: array [0..255] of longword = (
    $50A7F451, $5365417E, $C3A4171A, $965E273A, $CB6BAB3B, $F1459D1F, $AB58FAAC, $9303E34B,
    $55FA3020, $F66D76AD, $9176CC88, $254C02F5, $FCD7E54F, $D7CB2AC5, $80443526, $8FA362B5,
    $495AB1DE, $671BBA25, $980EEA45, $E1C0FE5D, $02752FC3, $12F04C81, $A397468D, $C6F9D36B,
    $E75F8F03, $959C9215, $EB7A6DBF, $DA595295, $2D83BED4, $D3217458, $2969E049, $44C8C98E,
    $6A89C275, $78798EF4, $6B3E5899, $DD71B927, $B64FE1BE, $17AD88F0, $66AC20C9, $B43ACE7D,
    $184ADF63, $82311AE5, $60335197, $457F5362, $E07764B1, $84AE6BBB, $1CA081FE, $942B08F9,
    $58684870, $19FD458F, $876CDE94, $B7F87B52, $23D373AB, $E2024B72, $578F1FE3, $2AAB5566,
    $0728EBB2, $03C2B52F, $9A7BC586, $A50837D3, $F2872830, $B2A5BF23, $BA6A0302, $5C8216ED,
    $2B1CCF8A, $92B479A7, $F0F207F3, $A1E2694E, $CDF4DA65, $D5BE0506, $1F6234D1, $8AFEA6C4,
    $9D532E34, $A055F3A2, $32E18A05, $75EBF6A4, $39EC830B, $AAEF6040, $069F715E, $51106EBD,
    $F98A213E, $3D06DD96, $AE053EDD, $46BDE64D, $B58D5491, $055DC471, $6FD40604, $FF155060,
    $24FB9819, $97E9BDD6, $CC434089, $779ED967, $BD42E8B0, $888B8907, $385B19E7, $DBEEC879,
    $470A7CA1, $E90F427C, $C91E84F8, $00000000, $83868009, $48ED2B32, $AC70111E, $4E725A6C,
    $FBFF0EFD, $5638850F, $1ED5AE3D, $27392D36, $64D90F0A, $21A65C68, $D1545B9B, $3A2E3624,
    $B1670A0C, $0FE75793, $D296EEB4, $9E919B1B, $4FC5C080, $A220DC61, $694B775A, $161A121C,
    $0ABA93E2, $E52AA0C0, $43E0223C, $1D171B12, $0B0D090E, $ADC78BF2, $B9A8B62D, $C8A91E14,
    $8519F157, $4C0775AF, $BBDD99EE, $FD607FA3, $9F2601F7, $BCF5725C, $C53B6644, $347EFB5B,
    $7629438B, $DCC623CB, $68FCEDB6, $63F1E4B8, $CADC31D7, $10856342, $40229713, $2011C684,
    $7D244A85, $F83DBBD2, $1132F9AE, $6DA129C7, $4B2F9E1D, $F330B2DC, $EC52860D, $D0E3C177,
    $6C16B32B, $99B970A9, $FA489411, $2264E947, $C48CFCA8, $1A3FF0A0, $D82C7D56, $EF903322,
    $C74E4987, $C1D138D9, $FEA2CA8C, $360BD498, $CF81F5A6, $28DE7AA5, $268EB7DA, $A4BFAD3F,
    $E49D3A2C, $0D927850, $9BCC5F6A, $62467E54, $C2138DF6, $E8B8D890, $5EF7392E, $F5AFC382,
    $BE805D9F, $7C93D069, $A92DD56F, $B31225CF, $3B99ACC8, $A77D1810, $6E639CE8, $7BBB3BDB,
    $097826CD, $F418596E, $01B79AEC, $A89A4F83, $656E95E6, $7EE6FFAA, $08CFBC21, $E6E815EF,
    $D99BE7BA, $CE366F4A, $D4099FEA, $D67CB029, $AFB2A431, $31233F2A, $3094A5C6, $C066A235,
    $37BC4E74, $A6CA82FC, $B0D090E0, $15D8A733, $4A9804F1, $F7DAEC41, $0E50CD7F, $2FF69117,
    $8DD64D76, $4DB0EF43, $544DAACC, $DF0496E4, $E3B5D19E, $1B886A4C, $B81F2CC1, $7F516546,
    $04EA5E9D, $5D358C01, $737487FA, $2E410BFB, $5A1D67B3, $52D2DB92, $335610E9, $1347D66D,
    $8C61D79A, $7A0CA137, $8E14F859, $893C13EB, $EE27A9CE, $35C961B7, $EDE51CE1, $3CB1477A,
    $59DFD29C, $3F73F255, $79CE1418, $BF37C773, $EACDF753, $5BAAFD5F, $146F3DDF, $86DB4478,
    $81F3AFCA, $3EC468B9, $2C342438, $5F40A3C2, $72C31D16, $0C25E2BC, $8B493C28, $41950DFF,
    $7101A839, $DEB30C08, $9CE4B4D8, $90C15664, $6184CB7B, $70B632D5, $745C6C48, $4257B8D0
  );


  LastInverseTable: array [0..255] of longword = (
    $00000052, $00000009, $0000006A, $000000D5, $00000030, $00000036, $000000A5, $00000038,
    $000000BF, $00000040, $000000A3, $0000009E, $00000081, $000000F3, $000000D7, $000000FB,
    $0000007C, $000000E3, $00000039, $00000082, $0000009B, $0000002F, $000000FF, $00000087,
    $00000034, $0000008E, $00000043, $00000044, $000000C4, $000000DE, $000000E9, $000000CB,
    $00000054, $0000007B, $00000094, $00000032, $000000A6, $000000C2, $00000023, $0000003D,
    $000000EE, $0000004C, $00000095, $0000000B, $00000042, $000000FA, $000000C3, $0000004E,
    $00000008, $0000002E, $000000A1, $00000066, $00000028, $000000D9, $00000024, $000000B2,
    $00000076, $0000005B, $000000A2, $00000049, $0000006D, $0000008B, $000000D1, $00000025,
    $00000072, $000000F8, $000000F6, $00000064, $00000086, $00000068, $00000098, $00000016,
    $000000D4, $000000A4, $0000005C, $000000CC, $0000005D, $00000065, $000000B6, $00000092,
    $0000006C, $00000070, $00000048, $00000050, $000000FD, $000000ED, $000000B9, $000000DA,
    $0000005E, $00000015, $00000046, $00000057, $000000A7, $0000008D, $0000009D, $00000084,
    $00000090, $000000D8, $000000AB, $00000000, $0000008C, $000000BC, $000000D3, $0000000A,
    $000000F7, $000000E4, $00000058, $00000005, $000000B8, $000000B3, $00000045, $00000006,
    $000000D0, $0000002C, $0000001E, $0000008F, $000000CA, $0000003F, $0000000F, $00000002,
    $000000C1, $000000AF, $000000BD, $00000003, $00000001, $00000013, $0000008A, $0000006B,
    $0000003A, $00000091, $00000011, $00000041, $0000004F, $00000067, $000000DC, $000000EA,
    $00000097, $000000F2, $000000CF, $000000CE, $000000F0, $000000B4, $000000E6, $00000073,
    $00000096, $000000AC, $00000074, $00000022, $000000E7, $000000AD, $00000035, $00000085,
    $000000E2, $000000F9, $00000037, $000000E8, $0000001C, $00000075, $000000DF, $0000006E,
    $00000047, $000000F1, $0000001A, $00000071, $0000001D, $00000029, $000000C5, $00000089,
    $0000006F, $000000B7, $00000062, $0000000E, $000000AA, $00000018, $000000BE, $0000001B,
    $000000FC, $00000056, $0000003E, $0000004B, $000000C6, $000000D2, $00000079, $00000020,
    $0000009A, $000000DB, $000000C0, $000000FE, $00000078, $000000CD, $0000005A, $000000F4,
    $0000001F, $000000DD, $000000A8, $00000033, $00000088, $00000007, $000000C7, $00000031,
    $000000B1, $00000012, $00000010, $00000059, $00000027, $00000080, $000000EC, $0000005F,
    $00000060, $00000051, $0000007F, $000000A9, $00000019, $000000B5, $0000004A, $0000000D,
    $0000002D, $000000E5, $0000007A, $0000009F, $00000093, $000000C9, $0000009C, $000000EF,
    $000000A0, $000000E0, $0000003B, $0000004D, $000000AE, $0000002A, $000000F5, $000000B0,
    $000000C8, $000000EB, $000000BB, $0000003C, $00000083, $00000053, $00000099, $00000061,
    $00000017, $0000002B, $00000004, $0000007E, $000000BA, $00000077, $000000D6, $00000026,
    $000000E1, $00000069, $00000014, $00000063, $00000055, $00000021, $0000000C, $0000007D
  );


procedure ExpandAESKeyForEncryption(const Key: TAESKey128; var ExpandedKey: TAESExpandedKey128);
var
  I, J: integer;
  T: longword;
  W0, W1, W2, W3: longword;
begin
  ExpandedKey[0] := PLongWord(@Key[0])^;
  ExpandedKey[1] := PLongWord(@Key[4])^;
  ExpandedKey[2] := PLongWord(@Key[8])^;
  ExpandedKey[3] := PLongWord(@Key[12])^;
  I := 0; J := 1;
  repeat
    T := (ExpandedKey[I + 3] shl 24) or (ExpandedKey[I + 3] shr 8);
    W0 := LastForwardTable[Byte(T)]; W1 := LastForwardTable[Byte(T shr 8)];
    W2 := LastForwardTable[Byte(T shr 16)]; W3 := LastForwardTable[Byte(T shr 24)];
    ExpandedKey[I + 4] := ExpandedKey[I] xor
      (W0 xor ((W1 shl 8) or (W1 shr 24)) xor
      ((W2 shl 16) or (W2 shr 16)) xor ((W3 shl 24) or (W3 shr 8))) xor Rcon[J];
    Inc(J);
    ExpandedKey[I + 5] := ExpandedKey[I + 1] xor ExpandedKey[I + 4];
    ExpandedKey[I + 6] := ExpandedKey[I + 2] xor ExpandedKey[I + 5];
    ExpandedKey[I + 7] := ExpandedKey[I + 3] xor ExpandedKey[I + 6];
    Inc(I, 4);
  until I >= 40;
end;


procedure ExpandAESKeyForEncryption(const Key: TAESKey192; var ExpandedKey: TAESExpandedKey192); overload;
var
  I, J: integer;
  T: longword;
  W0, W1, W2, W3: longword;
begin
  ExpandedKey[0] := PLongWord(@Key[0])^;
  ExpandedKey[1] := PLongWord(@Key[4])^;
  ExpandedKey[2] := PLongWord(@Key[8])^;
  ExpandedKey[3] := PLongWord(@Key[12])^;
  ExpandedKey[4] := PLongWord(@Key[16])^;
  ExpandedKey[5] := PLongWord(@Key[20])^;
  I := 0; J := 1;
  repeat
    T := (ExpandedKey[I + 5] shl 24) or (ExpandedKey[I + 5] shr 8);
    W0 := LastForwardTable[Byte(T)]; W1 := LastForwardTable[Byte(T shr 8)];
    W2 := LastForwardTable[Byte(T shr 16)]; W3 := LastForwardTable[Byte(T shr 24)];
    ExpandedKey[I + 6] := ExpandedKey[I] xor
      (W0 xor ((W1 shl 8) or (W1 shr 24)) xor
      ((W2 shl 16) or (W2 shr 16)) xor ((W3 shl 24) or (W3 shr 8))) xor Rcon[J];
    Inc(J);
    ExpandedKey[I + 7] := ExpandedKey[I + 1] xor ExpandedKey[I + 6];
    ExpandedKey[I + 8] := ExpandedKey[I + 2] xor ExpandedKey[I + 7];
    ExpandedKey[I + 9] := ExpandedKey[I + 3] xor ExpandedKey[I + 8];
    ExpandedKey[I + 10] := ExpandedKey[I + 4] xor ExpandedKey[I + 9];
    ExpandedKey[I + 11] := ExpandedKey[I + 5] xor ExpandedKey[I + 10];
    Inc(I, 6);
  until I >= 46;
end;


procedure ExpandAESKeyForEncryption(const Key: TAESKey256; var ExpandedKey: TAESExpandedKey256); overload;
var
  I, J: integer;
  T: longword;
  W0, W1, W2, W3: longword;
begin
  ExpandedKey[0] := PLongWord(@Key[0])^;
  ExpandedKey[1] := PLongWord(@Key[4])^;
  ExpandedKey[2] := PLongWord(@Key[8])^;
  ExpandedKey[3] := PLongWord(@Key[12])^;
  ExpandedKey[4] := PLongWord(@Key[16])^;
  ExpandedKey[5] := PLongWord(@Key[20])^;
  ExpandedKey[6] := PLongWord(@Key[24])^;
  ExpandedKey[7] := PLongWord(@Key[28])^;
  I := 0; J := 1;
  repeat
    T := (ExpandedKey[I + 7] shl 24) or (ExpandedKey[I + 7] shr 8);
    W0 := LastForwardTable[Byte(T)]; W1 := LastForwardTable[Byte(T shr 8)];
    W2 := LastForwardTable[Byte(T shr 16)]; W3 := LastForwardTable[Byte(T shr 24)];
    ExpandedKey[I + 8] := ExpandedKey[I] xor
      (W0 xor ((W1 shl 8) or (W1 shr 24)) xor
      ((W2 shl 16) or (W2 shr 16)) xor ((W3 shl 24) or (W3 shr 8))) xor Rcon[J];
    Inc(J);
    ExpandedKey[I + 9] := ExpandedKey[I + 1] xor ExpandedKey[I + 8];
    ExpandedKey[I + 10] := ExpandedKey[I + 2] xor ExpandedKey[I + 9];
    ExpandedKey[I + 11] := ExpandedKey[I + 3] xor ExpandedKey[I + 10];
    W0 := LastForwardTable[Byte(ExpandedKey[I + 11])];
    W1 := LastForwardTable[Byte(ExpandedKey[I + 11] shr 8)];
    W2 := LastForwardTable[Byte(ExpandedKey[I + 11] shr 16)];
    W3 := LastForwardTable[Byte(ExpandedKey[I + 11] shr 24)];
    ExpandedKey[I + 12] := ExpandedKey[I + 4] xor
      (W0 xor ((W1 shl 8) or (W1 shr 24)) xor
      ((W2 shl 16) or (W2 shr 16)) xor ((W3 shl 24) or (W3 shr 8)));
    ExpandedKey[I + 13] := ExpandedKey[I + 5] xor ExpandedKey[I + 12];
    ExpandedKey[I + 14] := ExpandedKey[I + 6] xor ExpandedKey[I + 13];
    ExpandedKey[I + 15] := ExpandedKey[I + 7] xor ExpandedKey[I + 14];
    Inc(I, 8);
  until I >= 52;
end;


procedure EncryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey128;
  var OutBuf: TAESBuffer); 
var
  T0, T1: array [0..3] of longword;
  W0, W1, W2, W3: longword;
begin
  // initializing
  T0[0] := PLongWord(@InBuf[0])^ xor Key[0];
  T0[1] := PLongWord(@InBuf[4])^ xor Key[1];
  T0[2] := PLongWord(@InBuf[8])^ xor Key[2];
  T0[3] := PLongWord(@InBuf[12])^ xor Key[3];
  // performing transformation 9 times
  // round 1
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[4];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[5];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[6];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[7];
  // round 2
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[8];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[9];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[10];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[11];
  // round 3
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[12];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[13];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[14];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[15];
  // round 4
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[16];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[17];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[18];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[19];
  // round 5
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[20];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[21];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[22];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[23];
  // round 6
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[24];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[25];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[26];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[27];
  // round 7
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[28];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[29];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[30];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[31];
  // round 8
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[32];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[33];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[34];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[35];
  // round 9
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[36];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[37];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[38];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[39];
  // last round of transformations
  W0 := LastForwardTable[Byte(T1[0])]; W1 := LastForwardTable[Byte(T1[1] shr 8)];
  W2 := LastForwardTable[Byte(T1[2] shr 16)]; W3 := LastForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[40];
  W0 := LastForwardTable[Byte(T1[1])]; W1 := LastForwardTable[Byte(T1[2] shr 8)];
  W2 := LastForwardTable[Byte(T1[3] shr 16)]; W3 := LastForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[41];
  W0 := LastForwardTable[Byte(T1[2])]; W1 := LastForwardTable[Byte(T1[3] shr 8)];
  W2 := LastForwardTable[Byte(T1[0] shr 16)]; W3 := LastForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[42];
  W0 := LastForwardTable[Byte(T1[3])]; W1 := LastForwardTable[Byte(T1[0] shr 8)];
  W2 := LastForwardTable[Byte(T1[1] shr 16)]; W3 := LastForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[43];
  // finalizing
  PLongWord(@OutBuf[0])^ := T0[0]; PLongWord(@OutBuf[4])^ := T0[1];
  PLongWord(@OutBuf[8])^ := T0[2]; PLongWord(@OutBuf[12])^ := T0[3];
end;


procedure EncryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey192;
  var OutBuf: TAESBuffer);
var
  T0, T1: array [0..3] of longword;
  W0, W1, W2, W3: longword;
begin
  // initializing
  T0[0] := PLongWord(@InBuf[0])^ xor Key[0];
  T0[1] := PLongWord(@InBuf[4])^ xor Key[1];
  T0[2] := PLongWord(@InBuf[8])^ xor Key[2];
  T0[3] := PLongWord(@InBuf[12])^ xor Key[3];
  // performing transformation 11 times
  // round 1
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[4];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[5];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[6];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[7];
  // round 2
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[8];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[9];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[10];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[11];
  // round 3
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[12];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[13];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[14];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[15];
  // round 4
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[16];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[17];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[18];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[19];
  // round 5
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[20];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[21];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[22];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[23];
  // round 6
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[24];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[25];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[26];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[27];
  // round 7
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[28];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[29];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[30];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[31];
  // round 8
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[32];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[33];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[34];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[35];
  // round 9
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[36];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[37];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[38];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[39];
  // round 10
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[40];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[41];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[42];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[43];
  // round 11
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[44];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[45];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[46];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[47];
  // last round of transformations
  W0 := LastForwardTable[Byte(T1[0])]; W1 := LastForwardTable[Byte(T1[1] shr 8)];
  W2 := LastForwardTable[Byte(T1[2] shr 16)]; W3 := LastForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[48];
  W0 := LastForwardTable[Byte(T1[1])]; W1 := LastForwardTable[Byte(T1[2] shr 8)];
  W2 := LastForwardTable[Byte(T1[3] shr 16)]; W3 := LastForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[49];
  W0 := LastForwardTable[Byte(T1[2])]; W1 := LastForwardTable[Byte(T1[3] shr 8)];
  W2 := LastForwardTable[Byte(T1[0] shr 16)]; W3 := LastForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[50];
  W0 := LastForwardTable[Byte(T1[3])]; W1 := LastForwardTable[Byte(T1[0] shr 8)];
  W2 := LastForwardTable[Byte(T1[1] shr 16)]; W3 := LastForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[51];
  // finalizing
  PLongWord(@OutBuf[0])^ := T0[0]; PLongWord(@OutBuf[4])^ := T0[1];
  PLongWord(@OutBuf[8])^ := T0[2]; PLongWord(@OutBuf[12])^ := T0[3];
end;


procedure EncryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey256;
  var OutBuf: TAESBuffer);
var
  T0, T1: array [0..3] of longword;
  W0, W1, W2, W3: longword;
begin
  // initializing
  T0[0] := PLongWord(@InBuf[0])^ xor Key[0];
  T0[1] := PLongWord(@InBuf[4])^ xor Key[1];
  T0[2] := PLongWord(@InBuf[8])^ xor Key[2];
  T0[3] := PLongWord(@InBuf[12])^ xor Key[3];
  // performing transformation 13 times
  // round 1
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[4];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[5];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[6];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[7];
  // round 2
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[8];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[9];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[10];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[11];
  // round 3
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[12];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[13];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[14];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[15];
  // round 4
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[16];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[17];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[18];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[19];
  // round 5
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[20];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[21];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[22];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[23];
  // round 6
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[24];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[25];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[26];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[27];
  // round 7
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[28];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[29];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[30];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[31];
  // round 8
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[32];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[33];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[34];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[35];
  // round 9
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[36];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[37];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[38];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[39];
  // round 10
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[40];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[41];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[42];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[43];
  // round 11
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[44];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[45];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[46];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[47];
  // round 12
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[48];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[49];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[50];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[51];
  // round 13
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[52];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[53];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[54];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[55];
  // last round of transformations
  W0 := LastForwardTable[Byte(T1[0])]; W1 := LastForwardTable[Byte(T1[1] shr 8)];
  W2 := LastForwardTable[Byte(T1[2] shr 16)]; W3 := LastForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[56];
  W0 := LastForwardTable[Byte(T1[1])]; W1 := LastForwardTable[Byte(T1[2] shr 8)];
  W2 := LastForwardTable[Byte(T1[3] shr 16)]; W3 := LastForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[57];
  W0 := LastForwardTable[Byte(T1[2])]; W1 := LastForwardTable[Byte(T1[3] shr 8)];
  W2 := LastForwardTable[Byte(T1[0] shr 16)]; W3 := LastForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[58];
  W0 := LastForwardTable[Byte(T1[3])]; W1 := LastForwardTable[Byte(T1[0] shr 8)];
  W2 := LastForwardTable[Byte(T1[1] shr 16)]; W3 := LastForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[59];
  // finalizing
  PLongWord(@OutBuf[0])^ := T0[0]; PLongWord(@OutBuf[4])^ := T0[1];
  PLongWord(@OutBuf[8])^ := T0[2]; PLongWord(@OutBuf[12])^ := T0[3];
end;


procedure ExpandAESKeyForDecryption(var ExpandedKey: TAESExpandedKey128);
var
  I: integer;
  U, F2, F4, F8, F9: longword;
begin
  for I := 1 to 9 do
  begin
    F9 := ExpandedKey[I * 4];
    U := F9 and $80808080;
    F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F2 and $80808080;
    F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F4 and $80808080;
    F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    F9 := F9 xor F8;
    ExpandedKey[I * 4] := F2 xor F4 xor F8 xor
      (((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
      (((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
    F9 := ExpandedKey[I * 4 + 1];
    U := F9 and $80808080;
    F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F2 and $80808080;
    F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F4 and $80808080;
    F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    F9 := F9 xor F8;
    ExpandedKey[I * 4 + 1] := F2 xor F4 xor F8 xor
      (((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
      (((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
    F9 := ExpandedKey[I * 4 + 2];
    U := F9 and $80808080;
    F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F2 and $80808080;
    F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F4 and $80808080;
    F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    F9 := F9 xor F8;
    ExpandedKey[I * 4 + 2] := F2 xor F4 xor F8 xor
      (((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
      (((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
    F9 := ExpandedKey[I * 4 + 3];
    U := F9 and $80808080;
    F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F2 and $80808080;
    F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F4 and $80808080;
    F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    F9 := F9 xor F8;
    ExpandedKey[I * 4 + 3] := F2 xor F4 xor F8 xor
      (((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
      (((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
  end;
end;


procedure ExpandAESKeyForDecryption(const Key: TAESKey128; var ExpandedKey: TAESExpandedKey128);
begin
  ExpandAESKeyForEncryption(Key, ExpandedKey);
  ExpandAESKeyForDecryption(ExpandedKey);
end;


procedure ExpandAESKeyForDecryption(var ExpandedKey: TAESExpandedKey192);
var
  I: integer;
  U, F2, F4, F8, F9: longword;
begin
  for I := 1 to 11 do
  begin
    F9 := ExpandedKey[I * 4];
    U := F9 and $80808080;
    F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F2 and $80808080;
    F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F4 and $80808080;
    F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    F9 := F9 xor F8;
    ExpandedKey[I * 4] := F2 xor F4 xor F8 xor
      (((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
      (((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
    F9 := ExpandedKey[I * 4 + 1];
    U := F9 and $80808080;
    F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F2 and $80808080;
    F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F4 and $80808080;
    F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    F9 := F9 xor F8;
    ExpandedKey[I * 4 + 1] := F2 xor F4 xor F8 xor
      (((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
      (((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
    F9 := ExpandedKey[I * 4 + 2];
    U := F9 and $80808080;
    F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F2 and $80808080;
    F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F4 and $80808080;
    F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    F9 := F9 xor F8;
    ExpandedKey[I * 4 + 2] := F2 xor F4 xor F8 xor
      (((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
      (((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
    F9 := ExpandedKey[I * 4 + 3];
    U := F9 and $80808080;
    F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F2 and $80808080;
    F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F4 and $80808080;
    F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    F9 := F9 xor F8;
    ExpandedKey[I * 4 + 3] := F2 xor F4 xor F8 xor
      (((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
      (((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
  end;
end;


procedure ExpandAESKeyForDecryption(const Key: TAESKey192; var ExpandedKey: TAESExpandedKey192);
begin
  ExpandAESKeyForEncryption(Key, ExpandedKey);
  ExpandAESKeyForDecryption(ExpandedKey);
end;


procedure ExpandAESKeyForDecryption(var ExpandedKey: TAESExpandedKey256);
var
  I: integer;
  U, F2, F4, F8, F9: longword;
begin
  for I := 1 to 13 do
  begin
    F9 := ExpandedKey[I * 4];
    U := F9 and $80808080;
    F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F2 and $80808080;
    F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F4 and $80808080;
    F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    F9 := F9 xor F8;
    ExpandedKey[I * 4] := F2 xor F4 xor F8 xor
      (((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
      (((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
    F9 := ExpandedKey[I * 4 + 1];
    U := F9 and $80808080;
    F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F2 and $80808080;
    F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F4 and $80808080;
    F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    F9 := F9 xor F8;
    ExpandedKey[I * 4 + 1] := F2 xor F4 xor F8 xor
      (((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
      (((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
    F9 := ExpandedKey[I * 4 + 2];
    U := F9 and $80808080;
    F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F2 and $80808080;
    F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F4 and $80808080;
    F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    F9 := F9 xor F8;
    ExpandedKey[I * 4 + 2] := F2 xor F4 xor F8 xor
      (((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
      (((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
    F9 := ExpandedKey[I * 4 + 3];
    U := F9 and $80808080;
    F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F2 and $80808080;
    F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F4 and $80808080;
    F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    F9 := F9 xor F8;
    ExpandedKey[I * 4 + 3] := F2 xor F4 xor F8 xor
      (((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
      (((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
  end;
end;


procedure ExpandAESKeyForDecryption(const Key: TAESKey256; var ExpandedKey: TAESExpandedKey256);
begin
  ExpandAESKeyForEncryption(Key, ExpandedKey);
  ExpandAESKeyForDecryption(ExpandedKey);
end;


procedure DecryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey128;
  var OutBuf: TAESBuffer);
var
  T0, T1: array [0..3] of longword;
  W0, W1, W2, W3: longword;
begin
  // initializing
  T0[0] := PLongWord(@InBuf[0])^ xor Key[40];
  T0[1] := PLongWord(@InBuf[4])^ xor Key[41];
  T0[2] := PLongWord(@InBuf[8])^ xor Key[42];
  T0[3] := PLongWord(@InBuf[12])^ xor Key[43];
  // performing transformations 9 times
  // round 1
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[36];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[37];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[38];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[39];
  // round 2
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[32];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[33];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[34];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[35];
  // round 3
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[28];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[29];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[30];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[31];
  // round 4
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[24];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[25];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[26];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[27];
  // round 5
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[20];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[21];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[22];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[23];
  // round 6
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[16];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[17];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[18];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[19];
  // round 7
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[12];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[13];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[14];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[15];
  // round 8
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[8];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[9];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[10];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[11];
  // round 9
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[4];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[5];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[6];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[7];
  // last round of transformations
  W0 := LastInverseTable[Byte(T1[0])]; W1 := LastInverseTable[Byte(T1[3] shr 8)];
  W2 := LastInverseTable[Byte(T1[2] shr 16)]; W3 := LastInverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[0];
  W0 := LastInverseTable[Byte(T1[1])]; W1 := LastInverseTable[Byte(T1[0] shr 8)];
  W2 := LastInverseTable[Byte(T1[3] shr 16)]; W3 := LastInverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[1];
  W0 := LastInverseTable[Byte(T1[2])]; W1 := LastInverseTable[Byte(T1[1] shr 8)];
  W2 := LastInverseTable[Byte(T1[0] shr 16)]; W3 := LastInverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[2];
  W0 := LastInverseTable[Byte(T1[3])]; W1 := LastInverseTable[Byte(T1[2] shr 8)];
  W2 := LastInverseTable[Byte(T1[1] shr 16)]; W3 := LastInverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[3];
  // finalizing
  PLongWord(@OutBuf[0])^ := T0[0]; PLongWord(@OutBuf[4])^ := T0[1];
  PLongWord(@OutBuf[8])^ := T0[2]; PLongWord(@OutBuf[12])^ := T0[3];
end;


procedure DecryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey192;
  var OutBuf: TAESBuffer);
var
  T0, T1: array [0..3] of longword;
  W0, W1, W2, W3: longword;
begin
  // initializing
  T0[0] := PLongWord(@InBuf[0])^ xor Key[48];
  T0[1] := PLongWord(@InBuf[4])^ xor Key[49];
  T0[2] := PLongWord(@InBuf[8])^ xor Key[50];
  T0[3] := PLongWord(@InBuf[12])^ xor Key[51];
  // performing transformations 11 times
  // round 1
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[44];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[45];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[46];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[47];
  // round 2
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[40];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[41];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[42];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[43];
  // round 3
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[36];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[37];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[38];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[39];
  // round 4
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[32];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[33];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[34];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[35];
  // round 5
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[28];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[29];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[30];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[31];
  // round 6
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[24];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[25];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[26];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[27];
  // round 7
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[20];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[21];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[22];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[23];
  // round 8
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[16];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[17];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[18];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[19];
  // round 9
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[12];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[13];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[14];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[15];
  // round 10
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[8];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[9];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[10];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[11];
  // round 11
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[4];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[5];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[6];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[7];
  // last round of transformations
  W0 := LastInverseTable[Byte(T1[0])]; W1 := LastInverseTable[Byte(T1[3] shr 8)];
  W2 := LastInverseTable[Byte(T1[2] shr 16)]; W3 := LastInverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[0];
  W0 := LastInverseTable[Byte(T1[1])]; W1 := LastInverseTable[Byte(T1[0] shr 8)];
  W2 := LastInverseTable[Byte(T1[3] shr 16)]; W3 := LastInverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[1];
  W0 := LastInverseTable[Byte(T1[2])]; W1 := LastInverseTable[Byte(T1[1] shr 8)];
  W2 := LastInverseTable[Byte(T1[0] shr 16)]; W3 := LastInverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[2];
  W0 := LastInverseTable[Byte(T1[3])]; W1 := LastInverseTable[Byte(T1[2] shr 8)];
  W2 := LastInverseTable[Byte(T1[1] shr 16)]; W3 := LastInverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[3];
  // finalizing
  PLongWord(@OutBuf[0])^ := T0[0]; PLongWord(@OutBuf[4])^ := T0[1];
  PLongWord(@OutBuf[8])^ := T0[2]; PLongWord(@OutBuf[12])^ := T0[3];
end;


procedure DecryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey256;
  var OutBuf: TAESBuffer);
var
  T0, T1: array [0..3] of longword;
  W0, W1, W2, W3: longword;
begin
  // initializing
  T0[0] := PLongWord(@InBuf[0])^ xor Key[56];
  T0[1] := PLongWord(@InBuf[4])^ xor Key[57];
  T0[2] := PLongWord(@InBuf[8])^ xor Key[58];
  T0[3] := PLongWord(@InBuf[12])^ xor Key[59];
  // performing transformations 13 times
  // round 1
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[52];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[53];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[54];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[55];
  // round 2
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[48];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[49];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[50];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[51];
  // round 3
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[44];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[45];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[46];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[47];
  // round 4
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[40];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[41];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[42];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[43];
  // round 5
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[36];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[37];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[38];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[39];
  // round 6
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[32];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[33];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[34];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[35];
  // round 7
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[28];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[29];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[30];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[31];
  // round 8
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[24];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[25];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[26];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[27];
  // round 9
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[20];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[21];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[22];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[23];
  // round 10
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[16];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[17];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[18];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[19];
  // round 11
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[12];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[13];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[14];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[15];
  // round 12
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[8];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[9];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[10];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[11];
  // round 13
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[4];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[5];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[6];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[7];
  // last round of transformations
  W0 := LastInverseTable[Byte(T1[0])]; W1 := LastInverseTable[Byte(T1[3] shr 8)];
  W2 := LastInverseTable[Byte(T1[2] shr 16)]; W3 := LastInverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[0];
  W0 := LastInverseTable[Byte(T1[1])]; W1 := LastInverseTable[Byte(T1[0] shr 8)];
  W2 := LastInverseTable[Byte(T1[3] shr 16)]; W3 := LastInverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[1];
  W0 := LastInverseTable[Byte(T1[2])]; W1 := LastInverseTable[Byte(T1[1] shr 8)];
  W2 := LastInverseTable[Byte(T1[0] shr 16)]; W3 := LastInverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[2];
  W0 := LastInverseTable[Byte(T1[3])]; W1 := LastInverseTable[Byte(T1[2] shr 8)];
  W2 := LastInverseTable[Byte(T1[1] shr 16)]; W3 := LastInverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[3];
  // finalizing
  PLongWord(@OutBuf[0])^ := T0[0]; PLongWord(@OutBuf[4])^ := T0[1];
  PLongWord(@OutBuf[8])^ := T0[2]; PLongWord(@OutBuf[12])^ := T0[3];
end;


// Stream encryption routines (ECB mode)


procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
  const Key: TAESKey128; Dest: TStream);
var
  ExpandedKey: TAESExpandedKey128;
begin
  ExpandAESKeyForEncryption(Key, ExpandedKey);
  EncryptAESStreamECB(Source, Count, ExpandedKey, Dest);
end;


procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
  const Key: TAESKey192; Dest: TStream);
var
  ExpandedKey: TAESExpandedKey192;
begin
  ExpandAESKeyForEncryption(Key, ExpandedKey);
  EncryptAESStreamECB(Source, Count, ExpandedKey, Dest);
end;


procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
  const Key: TAESKey256; Dest: TStream);
var
  ExpandedKey: TAESExpandedKey256;
begin
  ExpandAESKeyForEncryption(Key, ExpandedKey);
  EncryptAESStreamECB(Source, Count, ExpandedKey, Dest);
end;


procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey128; Dest: TStream);
var
  TempIn, TempOut: TAESBuffer;
  Done: cardinal;
begin
  if Count = 0 then
  begin
    Source.Position := 0;
    Count := Source.Size;
  end
  else Count := Min(Count, Source.Size - Source.Position);
  if Count = 0 then exit;
  while Count >= SizeOf(TAESBuffer) do
  begin
    Done := Source.Read(TempIn, SizeOf(TempIn));
    if Done < SizeOf(TempIn) then
      raise EStreamError.Create(SReadError);
    EncryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
    Dec(Count, SizeOf(TAESBuffer));
  end;
  if Count > 0 then
  begin
    Done := Source.Read(TempIn, Count);
    if Done < Count then
      raise EStreamError.Create(SReadError);
    FillChar(TempIn[Count], SizeOf(TempIn) - Count, 0);
    EncryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
  end;
end;


procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey192; Dest: TStream);
var
  TempIn, TempOut: TAESBuffer;
  Done: cardinal;
begin
  if Count = 0 then
  begin
    Source.Position := 0;
    Count := Source.Size;
  end
  else Count := Min(Count, Source.Size - Source.Position);
  if Count = 0 then exit;
  while Count >= SizeOf(TAESBuffer) do
  begin
    Done := Source.Read(TempIn, SizeOf(TempIn));
    if Done < SizeOf(TempIn) then
      raise EStreamError.Create(SReadError);
    EncryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
    Dec(Count, SizeOf(TAESBuffer));
  end;
  if Count > 0 then
  begin
    Done := Source.Read(TempIn, Count);
    if Done < Count then
      raise EStreamError.Create(SReadError);
    FillChar(TempIn[Count], SizeOf(TempIn) - Count, 0);
    EncryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
  end;
end;


procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey256; Dest: TStream);
var
  TempIn, TempOut: TAESBuffer;
  Done: cardinal;
begin
  if Count = 0 then
  begin
    Source.Position := 0;
    Count := Source.Size;
  end
  else Count := Min(Count, Source.Size - Source.Position);
  if Count = 0 then exit;
  while Count >= SizeOf(TAESBuffer) do
  begin
    Done := Source.Read(TempIn, SizeOf(TempIn));
    if Done < SizeOf(TempIn) then
      raise EStreamError.Create(SReadError);
    EncryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
    Dec(Count, SizeOf(TAESBuffer));
  end;
  if Count > 0 then
  begin
    Done := Source.Read(TempIn, Count);
    if Done < Count then
      raise EStreamError.Create(SReadError);
    FillChar(TempIn[Count], SizeOf(TempIn) - Count, 0);
    EncryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
  end;
end;


// Stream decryption routines (ECB mode)


procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
  const Key: TAESKey128; Dest: TStream);
var
  ExpandedKey: TAESExpandedKey128;
begin
  ExpandAESKeyForDecryption(Key, ExpandedKey);
  DecryptAESStreamECB(Source, Count, ExpandedKey, Dest);
end;


procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey128; Dest: TStream);
var
  TempIn, TempOut: TAESBuffer;
  Done: cardinal;
begin
  if Count = 0 then
  begin
    Source.Position := 0;
    Count := Source.Size;
  end
  else Count := Min(Count, Source.Size - Source.Position);
  if Count = 0 then exit;
  if (Count mod SizeOf(TAESBuffer)) > 0 then
    raise EAESError.Create(SInvalidInBufSize);
  while Count >= SizeOf(TAESBuffer) do
  begin
    Done := Source.Read(TempIn, SizeOf(TempIn));
    if Done < SizeOf(TempIn) then
      raise EStreamError.Create(SReadError);
    DecryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
    Dec(Count, SizeOf(TAESBuffer));
  end;
end;


procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
  const Key: TAESKey192; Dest: TStream);
var
  ExpandedKey: TAESExpandedKey192;
begin
  ExpandAESKeyForDecryption(Key, ExpandedKey);
  DecryptAESStreamECB(Source, Count, ExpandedKey, Dest);
end;


procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey192; Dest: TStream);
var
  TempIn, TempOut: TAESBuffer;
  Done: cardinal;
begin
  if Count = 0 then
  begin
    Source.Position := 0;
    Count := Source.Size;
  end
  else Count := Min(Count, Source.Size - Source.Position);
  if Count = 0 then exit;
  if (Count mod SizeOf(TAESBuffer)) > 0 then
    raise EAESError.Create(SInvalidInBufSize);
  while Count >= SizeOf(TAESBuffer) do
  begin
    Done := Source.Read(TempIn, SizeOf(TempIn));
    if Done < SizeOf(TempIn) then
      raise EStreamError.Create(SReadError);
    DecryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
    Dec(Count, SizeOf(TAESBuffer));
  end;
end;


procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
  const Key: TAESKey256; Dest: TStream);
var
  ExpandedKey: TAESExpandedKey256;
begin
  ExpandAESKeyForDecryption(Key, ExpandedKey);
  DecryptAESStreamECB(Source, Count, ExpandedKey, Dest);
end;


procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey256; Dest: TStream);
var
  TempIn, TempOut: TAESBuffer;
  Done: cardinal;
begin
  if Count = 0 then
  begin
    Source.Position := 0;
    Count := Source.Size;
  end
  else Count := Min(Count, Source.Size - Source.Position);
  if Count = 0 then exit;
  if (Count mod SizeOf(TAESBuffer)) > 0 then
    raise EAESError.Create(SInvalidInBufSize);
  while Count >= SizeOf(TAESBuffer) do
  begin
    Done := Source.Read(TempIn, SizeOf(TempIn));
    if Done < SizeOf(TempIn) then
      raise EStreamError.Create(SReadError);
    DecryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
    Dec(Count, SizeOf(TAESBuffer));
  end;
end;


// Stream encryption routines (CBC mode)


procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
  const Key: TAESKey128; const InitVector: TAESBuffer; Dest: TStream);
var
  ExpandedKey: TAESExpandedKey128;
begin
  ExpandAESKeyForEncryption(Key, ExpandedKey);
  EncryptAESStreamCBC(Source, Count, ExpandedKey, InitVector, Dest);
end;


procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey128;  const InitVector: TAESBuffer;
  Dest: TStream);
var
  TempIn, TempOut, Vector: TAESBuffer;
  Done: cardinal;
begin
  if Count = 0 then
  begin
    Source.Position := 0;
    Count := Source.Size;
  end
  else Count := Min(Count, Source.Size - Source.Position);
  if Count = 0 then exit;
  Vector := InitVector;
  while Count >= SizeOf(TAESBuffer) do
  begin
    Done := Source.Read(TempIn, SizeOf(TempIn));
    if Done < SizeOf(TempIn) then
      raise EStreamError.Create(SReadError);
    PLongWord(@TempIn[0])^ := PLongWord(@TempIn[0])^ xor PLongWord(@Vector[0])^;
    PLongWord(@TempIn[4])^ := PLongWord(@TempIn[4])^ xor PLongWord(@Vector[4])^;
    PLongWord(@TempIn[8])^ := PLongWord(@TempIn[8])^ xor PLongWord(@Vector[8])^;
    PLongWord(@TempIn[12])^ := PLongWord(@TempIn[12])^ xor PLongWord(@Vector[12])^;
    EncryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
    Vector := TempOut;
    Dec(Count, SizeOf(TAESBuffer));
  end;
  if Count > 0 then
  begin
    Done := Source.Read(TempIn, Count);
    if Done < Count then
      raise EStreamError.Create(SReadError);
    FillChar(TempIn[Count], SizeOf(TempIn) - Count, 0);
    PLongWord(@TempIn[0])^ := PLongWord(@TempIn[0])^ xor PLongWord(@Vector[0])^;
    PLongWord(@TempIn[4])^ := PLongWord(@TempIn[4])^ xor PLongWord(@Vector[4])^;
    PLongWord(@TempIn[8])^ := PLongWord(@TempIn[8])^ xor PLongWord(@Vector[8])^;
    PLongWord(@TempIn[12])^ := PLongWord(@TempIn[12])^ xor PLongWord(@Vector[12])^;
    EncryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
  end;
end;


procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
  const Key: TAESKey192; const InitVector: TAESBuffer; Dest: TStream);
var
  ExpandedKey: TAESExpandedKey192;
begin
  ExpandAESKeyForEncryption(Key, ExpandedKey);
  EncryptAESStreamCBC(Source, Count, ExpandedKey, InitVector, Dest);
end;


procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey192;  const InitVector: TAESBuffer;
  Dest: TStream);
var
  TempIn, TempOut, Vector: TAESBuffer;
  Done: cardinal;
begin
  if Count = 0 then
  begin
    Source.Position := 0;
    Count := Source.Size;
  end
  else Count := Min(Count, Source.Size - Source.Position);
  if Count = 0 then exit;
  Vector := InitVector;
  while Count >= SizeOf(TAESBuffer) do
  begin
    Done := Source.Read(TempIn, SizeOf(TempIn));
    if Done < SizeOf(TempIn) then
      raise EStreamError.Create(SReadError);
    PLongWord(@TempIn[0])^ := PLongWord(@TempIn[0])^ xor PLongWord(@Vector[0])^;
    PLongWord(@TempIn[4])^ := PLongWord(@TempIn[4])^ xor PLongWord(@Vector[4])^;
    PLongWord(@TempIn[8])^ := PLongWord(@TempIn[8])^ xor PLongWord(@Vector[8])^;
    PLongWord(@TempIn[12])^ := PLongWord(@TempIn[12])^ xor PLongWord(@Vector[12])^;
    EncryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
    Vector := TempOut;
    Dec(Count, SizeOf(TAESBuffer));
  end;
  if Count > 0 then
  begin
    Done := Source.Read(TempIn, Count);
    if Done < Count then
      raise EStreamError.Create(SReadError);
    FillChar(TempIn[Count], SizeOf(TempIn) - Count, 0);
    PLongWord(@TempIn[0])^ := PLongWord(@TempIn[0])^ xor PLongWord(@Vector[0])^;
    PLongWord(@TempIn[4])^ := PLongWord(@TempIn[4])^ xor PLongWord(@Vector[4])^;
    PLongWord(@TempIn[8])^ := PLongWord(@TempIn[8])^ xor PLongWord(@Vector[8])^;
    PLongWord(@TempIn[12])^ := PLongWord(@TempIn[12])^ xor PLongWord(@Vector[12])^;
    EncryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
  end;
end;


procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
  const Key: TAESKey256; const InitVector: TAESBuffer; Dest: TStream);
var
  ExpandedKey: TAESExpandedKey256;
begin
  ExpandAESKeyForEncryption(Key, ExpandedKey);
  EncryptAESStreamCBC(Source, Count, ExpandedKey, InitVector, Dest);
end;


procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey256;  const InitVector: TAESBuffer;
  Dest: TStream);
var
  TempIn, TempOut, Vector: TAESBuffer;
  Done: cardinal;
begin
  if Count = 0 then
  begin
    Source.Position := 0;
    Count := Source.Size;
  end
  else Count := Min(Count, Source.Size - Source.Position);
  if Count = 0 then exit;
  Vector := InitVector;
  while Count >= SizeOf(TAESBuffer) do
  begin
    Done := Source.Read(TempIn, SizeOf(TempIn));
    if Done < SizeOf(TempIn) then
      raise EStreamError.Create(SReadError);
    PLongWord(@TempIn[0])^ := PLongWord(@TempIn[0])^ xor PLongWord(@Vector[0])^;
    PLongWord(@TempIn[4])^ := PLongWord(@TempIn[4])^ xor PLongWord(@Vector[4])^;
    PLongWord(@TempIn[8])^ := PLongWord(@TempIn[8])^ xor PLongWord(@Vector[8])^;
    PLongWord(@TempIn[12])^ := PLongWord(@TempIn[12])^ xor PLongWord(@Vector[12])^;
    EncryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
    Vector := TempOut;
    Dec(Count, SizeOf(TAESBuffer));
  end;
  if Count > 0 then
  begin
    Done := Source.Read(TempIn, Count);
    if Done < Count then
      raise EStreamError.Create(SReadError);
    FillChar(TempIn[Count], SizeOf(TempIn) - Count, 0);
    PLongWord(@TempIn[0])^ := PLongWord(@TempIn[0])^ xor PLongWord(@Vector[0])^;
    PLongWord(@TempIn[4])^ := PLongWord(@TempIn[4])^ xor PLongWord(@Vector[4])^;
    PLongWord(@TempIn[8])^ := PLongWord(@TempIn[8])^ xor PLongWord(@Vector[8])^;
    PLongWord(@TempIn[12])^ := PLongWord(@TempIn[12])^ xor PLongWord(@Vector[12])^;
    EncryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
  end;
end;


// Stream decryption routines (CBC mode)


procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
  const Key: TAESKey128; const InitVector: TAESBuffer; Dest: TStream);
var
  ExpandedKey: TAESExpandedKey128;
begin
  ExpandAESKeyForDecryption(Key, ExpandedKey);
  DecryptAESStreamCBC(Source, Count, ExpandedKey, InitVector, Dest);
end;


procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey128;  const InitVector: TAESBuffer;
  Dest: TStream);
var
  TempIn, TempOut: TAESBuffer;
  Vector1, Vector2: TAESBuffer;
  Done: cardinal;
begin
  if Count = 0 then
  begin
    Source.Position := 0;
    Count := Source.Size;
  end
  else Count := Min(Count, Source.Size - Source.Position);
  if Count = 0 then exit;
  if (Count mod SizeOf(TAESBuffer)) > 0 then
    raise EAESError.Create(SInvalidInBufSize);
  Vector1 := InitVector;
  while Count >= SizeOf(TAESBuffer) do
  begin
    Done := Source.Read(TempIn, SizeOf(TempIn));
    if Done < SizeOf(TempIn) then
      raise EStreamError(SReadError);
    Vector2 := TempIn;
    DecryptAES(TempIn, ExpandedKey, TempOut);
    PLongWord(@TempOut[0])^ := PLongWord(@TempOut[0])^ xor PLongWord(@Vector1[0])^;
    PLongWord(@TempOut[4])^ := PLongWord(@TempOut[4])^ xor PLongWord(@Vector1[4])^;
    PLongWord(@TempOut[8])^ := PLongWord(@TempOut[8])^ xor PLongWord(@Vector1[8])^;
    PLongWord(@TempOut[12])^ := PLongWord(@TempOut[12])^ xor PLongWord(@Vector1[12])^;
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError(SWriteError);
    Vector1 := Vector2;
    Dec(Count, SizeOf(TAESBuffer));
  end;
end;


procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
  const Key: TAESKey192; const InitVector: TAESBuffer; Dest: TStream);
var
  ExpandedKey: TAESExpandedKey192;
begin
  ExpandAESKeyForDecryption(Key, ExpandedKey);
  DecryptAESStreamCBC(Source, Count, ExpandedKey, InitVector, Dest);
end;


procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey192;  const InitVector: TAESBuffer;
  Dest: TStream);
var
  TempIn, TempOut: TAESBuffer;
  Vector1, Vector2: TAESBuffer;
  Done: cardinal;
begin
  if Count = 0 then
  begin
    Source.Position := 0;
    Count := Source.Size;
  end
  else Count := Min(Count, Source.Size - Source.Position);
  if Count = 0 then exit;
  if (Count mod SizeOf(TAESBuffer)) > 0 then
    raise EAESError.Create(SInvalidInBufSize);
  Vector1 := InitVector;
  while Count >= SizeOf(TAESBuffer) do
  begin
    Done := Source.Read(TempIn, SizeOf(TempIn));
    if Done < SizeOf(TempIn) then
      raise EStreamError(SReadError);
    Vector2 := TempIn;
    DecryptAES(TempIn, ExpandedKey, TempOut);
    PLongWord(@TempOut[0])^ := PLongWord(@TempOut[0])^ xor PLongWord(@Vector1[0])^;
    PLongWord(@TempOut[4])^ := PLongWord(@TempOut[4])^ xor PLongWord(@Vector1[4])^;
    PLongWord(@TempOut[8])^ := PLongWord(@TempOut[8])^ xor PLongWord(@Vector1[8])^;
    PLongWord(@TempOut[12])^ := PLongWord(@TempOut[12])^ xor PLongWord(@Vector1[12])^;
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError(SWriteError);
    Vector1 := Vector2;
    Dec(Count, SizeOf(TAESBuffer));
  end;
end;


procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
  const Key: TAESKey256; const InitVector: TAESBuffer; Dest: TStream);
var
  ExpandedKey: TAESExpandedKey256;
begin
  ExpandAESKeyForDecryption(Key, ExpandedKey);
  DecryptAESStreamCBC(Source, Count, ExpandedKey, InitVector, Dest);
end;


procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey256;  const InitVector: TAESBuffer;
  Dest: TStream);
var
  TempIn, TempOut: TAESBuffer;
  Vector1, Vector2: TAESBuffer;
  Done: cardinal;
begin
  if Count = 0 then
  begin
    Source.Position := 0;
    Count := Source.Size;
  end
  else Count := Min(Count, Source.Size - Source.Position);
  if Count = 0 then exit;
  if (Count mod SizeOf(TAESBuffer)) > 0 then
    raise EAESError.Create(SInvalidInBufSize);
  Vector1 := InitVector;
  while Count >= SizeOf(TAESBuffer) do
  begin
    Done := Source.Read(TempIn, SizeOf(TempIn));
    if Done < SizeOf(TempIn) then
      raise EStreamError(SReadError);
    Vector2 := TempIn;
    DecryptAES(TempIn, ExpandedKey, TempOut);
    PLongWord(@TempOut[0])^ := PLongWord(@TempOut[0])^ xor PLongWord(@Vector1[0])^;
    PLongWord(@TempOut[4])^ := PLongWord(@TempOut[4])^ xor PLongWord(@Vector1[4])^;
    PLongWord(@TempOut[8])^ := PLongWord(@TempOut[8])^ xor PLongWord(@Vector1[8])^;
    PLongWord(@TempOut[12])^ := PLongWord(@TempOut[12])^ xor PLongWord(@Vector1[12])^;
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError(SWriteError);
    Vector1 := Vector2;
    Dec(Count, SizeOf(TAESBuffer));
  end;
end;


end.

你可能感兴趣的:((05)C++ builder之AES加解密)