STM32学习笔记----内存管理

1.简介

内存管理: 指软件运行时对计算机内存资源的分配和使用的技术。其最主要的目的是如何高效,快速的分配,并且在适当的时候释放和回收内存资源。 内存管理的实现方法有很多种,最终都是要实现两个函数: malloc 和 free。
malloc :函数用于内存申请;
free: 函数用于内存释放。

1.1 分块式内存管理原理

STM32学习笔记----内存管理_第1张图片

由上图可知,分块式内存管理由内存池和内存管理表两部分组成。内存池被等分为 n块,对应的内存管理表,大小也为 n,内存管理表的每一个项对应内存池的一块内存。

内存管理表的项值代表的意义:当该项值为 0 的时候,代表对应的内存块未被占用;当该项值非零的时候,代表该项对应的内存块已经被占用,其数值则代表被连续占用的内存块数。

比如:某项值为 10,那么说明包括本项对应的内存块在内,总共分配了 10 个内存块给外部的某
个指针。内寸分配方向如图所示,是从顶—>底的分配方向。即首先从最末端开始找空内存。当内存管理刚初始化的时候,内存表全部清零,表示没有任何内存块被占用。

1.2 分配原理

当指针 p 调用 malloc 申请内存的时候,先判断 p 要分配的内存块数(m),然后从第 n 项开始,向下查找,直到找到 m 块连续的空内存块(即对应内存管理表项为 0),然后将这 m 个内存管理表项的值都设置为 m(标记被占用),最后,把最后的这个空内存块的地址返回指针 p,完成一次分配。

注:如果当内存不够的时候(找到最后也没找到连续的 m 块空闲内存),则返回 NULL 给 p,表示分配失败。

1.3 释放原理

当 p 申请的内存用完,需要释放的时候,调用 free 函数实现。 free 函数先判断 p 指向的内存地址所对应的内存块,然后找到对应的内存管理表项目,得到 p 所占用的内存块数目 m(内存管理表项目的值就是所分配内存块的数目),将这 m 个内存管理表项目的值都清零,标记释放,完成一次内存释放。

2.代码

1. 思想:将内存池分为块,首先定义每个块的字节数,和内存池的总字节数,用总字节数除以每个块的字节数得到块数
STM32学习笔记----内存管理_第2张图片
2. 内存池,实际上就是一个数组
在这里插入图片描述
3. 内存管理块,实际也是一个数组,总元素个数为内存块数,每个元素对应一个内存块,该元素非零时表示该内存块没有被占用
在这里插入图片描述
4. 将第一步中的信息用数组保存起来,方便后面的函数调用
在这里插入图片描述
5. 将内存抽象为一个结构体,传入的参数分别是,初始化函数,占用率函数,两个内存池(数组)的基地址,两个内存管理状态表(两个u16数组),两个内存池的就绪布尔值
STM32学习笔记----内存管理_第3张图片
STM32学习笔记----内存管理_第4张图片
6. 初始化函数,实际上就是将指定内存池(数组)内面的内容全部用0填充,将内存状态表(u16数组)全部用0填充,然后将该内存池的就绪布尔变量置一
STM32学习笔记----内存管理_第5张图片
7. 计算内存使用率,注意:得到的是块使用的比率,而不是字节使用的比率
STM32学习笔记----内存管理_第6张图片
8. 复制,就是按字节依次赋值内容
STM32学习笔记----内存管理_第7张图片
9. 从起始位置将连续count个字节的区域用c填充
在这里插入图片描述
10. 分配内存(内部调用),成功:返回相对于数组首地址的偏移地址。
  ->判断指定的内存池是否已经初始化
  ->若传入参数为0,表示不需要分配,直接返回
  ->通过所需字节数对每个块的字节数分别取整,取余得到所需的连续块数
  ->从最后一个块往前面寻找所需的连续块,例如所需的块为3,当找到连续2块而,下一块已经被使用时,则将已经找的的连续块数清零,再在前面找连续的3块
  ->返回的偏移地址为所需连续块的起始块相对于内存池的偏移地址
  ->将即将用到的内存块对应的内存管理表中的元素置为所需的连续块数

STM32学习笔记----内存管理_第8张图片
11. 分配内存,首先判断偏移地址是否正确,然后返回连续块的首地址
STM32学习笔记----内存管理_第9张图片
12. 扩大分配内存,首先分配一个指定的内存,再将旧内存里面的内容拷贝到新内存(这里感觉战舰的源码有问题,旧的内存里面原来没有size个元素,却拷贝size个元素到新的空间),
  最后释放旧的内存空间,返回新的内存(块)首地址
STM32学习笔记----内存管理_第10张图片
13. 清除连续的内存块,成功:返回0
  ->首先通过偏移地址除以每个块的字节数,得到起始块的序号
  ->读取起始块对应的内存控制表元素,得到从起始块开始共要清除多少个连续的块
  ->所谓的清除,实际上只是将对应的内存控制表的元素清零,内存中的值未清零。
  ->为某个对象分配元素时,是分配的连续块,清除时,也是清除这几个连续块,不同对象占用不同的连续块,清除时,不会影响其他对象。

STM32学习笔记----内存管理_第11张图片
14. 内存释放函数,首先得出偏移地址,然后,调用上一步的函数释放内存
STM32学习笔记----内存管理_第12张图片
(PS:2部分转自http://www.cnblogs.com/guozhikai/p/6031904.html)

3.字节对齐说明

3.1.什么是字节对齐,为什么要对齐?

现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特定的内存地址访问,这就需要各种类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。
对齐的作用和原因:各个硬件平台对存储空间的处理上有很大的不同。一些平台对某些特定类型的数据只能从某些特定地址开始存取。比如有些架构的CPU在访问 一个没有进行对齐的变量的时候会发生错误,那么在这种架构下编程必须保证字节对齐.其他平台可能没有这种情况,但是最常见的是如果不按照适合其平台要求对数据存放进行对齐,会在存取效率上带来损失。比如有些平台每次读都是从偶地址开始,如果一个int型(假设为32位系统)如果存放在偶地址开始的地方,那 么一个读周期就可以读出这32bit,而如果存放在奇地址开始的地方,就需要2个读周期,并对两次读出的结果的高低字节进行拼凑才能得到该32bit数 据。显然在读取效率上下降很多。

3.2字节对齐对程序的影响:

设结构体如下定义:
struct A
{
int a;
char b;
short c;
};
struct B
{
char b;
int a;
short c;
};
现在已知32位机器上各种数据类型的长度如下:
char:1(有符号无符号同)
short:2(有符号无符号同)
int:4(有符号无符号同)
long:4(有符号无符号同)
float:4 double:8
那么上面两个结构大小如何呢?
结果是:
sizeof(strcut A)值为8
sizeof(struct B)的值却是12

3.3.编译器是按照什么样的原则进行对齐的?

先让我们看四个重要的基本概念:

1.数据类型自身的对齐值:

对于char型数据,其自身对齐值为1,对于short型为2,对于int,float,double类型,其自身对齐值为4,单位字节。

2.结构体或者类的自身对齐值:其成员中自身对齐值最大的那个值。

3.指定对齐值:#pragma pack (value)时的指定对齐值value。

4.数据成员、结构体和类的有效对齐值:自身对齐值和指定对齐值中小的那个值。

有 了这些值,我们就可以很方便的来讨论具体数据结构的成员和其自身的对齐方式。有效对齐值N是最终用来决定数据存放地址方式的值,最重要。有效对齐N,就是 表示“对齐在N上”,也就是说该数据的"存放起始地址%N=0".而数据结构中的数据变量都是按定义的先后顺序来排放的。第一个数据变量的起始地址就是数据结构的起始地址。结构体的成员变量要对齐排放,结构体本身也要根据自身的有效对齐值圆整(就是结构体成员变量占用总长度需要是对结构体有效对齐值的整倍,结合下面例子理解)。这样就不能理解上面的几个例子的值了。
例子分析:
分析例子B;
struct B
{
char b;
int a;
short c;
};
假设B从地址空间0x0000开始排放。该例子中没有定义指定对齐值,假设该值默认为4。第一个成员变量b的自身对齐值是1,比指定或者默认指定对齐值4小,所以其有效对齐值为1,所以其存放地址0x0000符合0x0000%1=0.第二个成员变量a,其自身对齐值为4,所以有效对齐值也为4, 所以只能存放在起始地址为0x0004到0x0007这四个连续的字节空间中,符合0x0004%4=0,且紧靠第一个变量。第三个变量c,自身对齐值为 2,所以有效对齐值也是2,可以存放在0x0008到0x0009这两个字节空间中,符合0x0008%2=0。所以从0x0000到0x0009存放的都是B内容。再看数据结构B的自身对齐值为其变量中最大对齐值(这里是b)所以就是4,所以结构体的有效对齐值也是4。根据结构体圆整的要求, 0x0009到0x0000=10字节,(10+2)%4=0。所以0x0000A到0x000B也为结构体B所占用。故B从0x0000到0x000B 共有12个字节,sizeof(struct B)=12;其实如果就这一个就来说它已将满足字节对齐了, 因为它的起始地址是0,因此肯定是对齐的,之所以在后面补充2个字节,是因为编译器为了实现结构数组的存取效率,试想如果我们定义了一个结构B的数组,那 么第一个结构起始地址是0没有问题,但是第二个结构呢?按照数组的定义,数组中所有元素都是紧挨着的,如果我们不把结构的大小补充为4的整数倍,那么下一 个结构的起始地址将是0x0000A,这显然不能满足结构的地址对齐了,因此我们要把结构补充成有效对齐大小的整数倍.
同理,分析上面例子C:
#pragma pack (2) /指定按2字节对齐/
struct C
{
char b;
int a;
short c;
};
#pragma pack () /取消指定对齐,恢复缺省对齐/
第一个变量b的自身对齐值为1,指定对齐值为2,所以,其有效对齐值为1,假设C从0x0000开始,那么b存放在0x0000,符合0x0000%1= 0;第二个变量,自身对齐值为4,指定对齐值为2,所以有效对齐值为2,所以顺序存放在0x0002、0x0003、0x0004、0x0005四个连续字节中,符合0x0002%2=0。第三个变量c的自身对齐值为2,所以有效对齐值为2,顺序存放
在0x0006、0x0007中,符合 0x0006%2=0。所以从0x0000到0x00007共八字节存放的是C的变量。又C的自身对齐值为4,所以C的有效对齐值为2。又8%2=0,C 只占用0x0000到0x0007的八个字节。所以sizeof(struct C)=8.

3.4.如何修改编译器的默认对齐值?

1.在VC IDE中,可以这样修改:[Project]|[Settings],c/c++选项卡Category的Code Generation选项的Struct Member Alignment中修改,默认是8字节。
2.在编码时,可以这样动态修改:#pragma pack .注意:是pragma而不是progma.

3.5.针对字节对齐,我们在编程中如何考虑?

如果在编程的时候要考虑节约空间的话,那么我们只需要假定结构的首地址是0,然后各个变量按照上面的原则进行排列即可,基本的原则就是把结构中的变量按照类型大小从小到大声明,尽量减少中间的填补空间.还有一种就是为了以空间换取时间的效率,我们显示的进行填补空间进行对齐,比如:有一种使用空间换时间做 法是显式的插入reserved成员:
struct A{
char a;
char reserved[3];//使用空间换时间
int b;
}

reserved成员对我们的程序没有什么意义,它只是起到填补空间以达到字节对齐的目的,当然即使不加这个成员通常编译器也会给我们自动填补对齐,我们自己加上它只是起到显式的提醒作用.

3.6.字节对齐可能带来的隐患:

代码中关于对齐的隐患,很多是隐式的。比如在强制类型转换的时候。例如:
unsigned int i = 0x12345678;
unsigned char *p=NULL;
unsigned short *p1=NULL;

p=&i;
*p=0x00;
p1=(unsigned short *)(p+1);
*p1=0x0000;
最后两句代码,从奇数边界去访问unsigned short型变量,显然不符合对齐的规定。
在x86上,类似的操作只会影响效率,但是在MIPS或者sparc上,可能就是一个error,因为它们要求必须字节对齐.

3.7.如何查找与字节对齐方面的问题:

如果出现对齐或者赋值问题首先查看

  1. 编译器的big little端设置
  2. 看这种体系本身是否支持非对齐访问
  3. 如果支持看设置了对齐与否,如果没有则看访问时需要加某些特殊的修饰来标志其特殊访问操作。

3.8.对齐的使用:

1.__align(num)
这个用于修改最高级别对象的字节边界。在汇编中使用LDRD或者STRD时就要用到此命令__align(8)进行修饰限制。来保证数据对象是相应对齐。
__align是存储类修改,他只修饰最高级类型对象不能用于结构或者函数对象。
__align 关键字指示编译器在 n 字节边界上对齐变量。
__align 是一个存储类修饰符。它不影响函数的类型。
__align 关键字紧靠变量名称前面放置。
__align 关键字只能进行过对齐。也就是说,可以将两个字节的对象按 4 个字节对齐,而不能将 4 个字节的对象按两个字节对齐。
语法 :__align(n)
其中: n是对齐边界。对于局部变量,n 值可为 1、2、4 或 8。对于全局变量,n 可以具有最大为 2 的 0x80000000 次幂的任何值。
用法: 如果声明的变量的常规对齐边界小于 n,__align(n) 是非常有用的。

示例
2.__packed
__packed是进行一字节对齐
1.不能对packed的对象进行对齐
2.所有对象的读写访问都进行非对齐访问
3.float及包含float的结构联合及未用__packed的对象将不能字节对齐
4.__packed对局部整形变量无影响

(PS:3部分转自http://www.cnblogs.com/xidongs/p/5655440.html)

你可能感兴趣的:(STM32笔记)