POJ-2456疯牛(二分搜索+最小值最大化)

描述 农夫 John 建造了一座很长的畜栏,它包括N (2 <= N <= 100,000)个隔间,这些小隔间依次编号为x1,...,xN (0 <= xi <= 1,000,000,000).
但是,John的C (2 <= C <= N)头牛们并不喜欢这种布局,而且几头牛放在一个隔间里,他们就要发生争斗。为了不让牛互相伤害。John决定自己给牛分配隔间,使任意两头牛之间的最小距离尽可能的大,那么,这个最大的最小距离是什么呢?
输入
有多组测试数据,以EOF结束。
第一行:空格分隔的两个整数N和C
第二行——第N+1行:分别指出了xi的位置
输出
每组测试数据输出一个整数,满足题意的最大的最小值,注意换行。
样例输入
5 3
1
2
8
4
9
样例输出
3

题意要表达的是:把C头牛放到N个带有编号的隔间里,使得任意两头牛所在的隔间编号的最小差值最大。例如样例排完序后变成1 2 4 8 9,那么1位置放一头牛,4位置放一头牛,它们的差值为3;最后一头牛放在8或9位置都可以,和4位置的差值分别为4、5,和1位置的差值分别为7和8,不比3小,所以最大的最小值为3。

分析:这是一个最小值最大化的问题。先对隔间编号从小到大排序,则最大距离不会超过两端的两头牛之间的差值,最小值为0。所以我们可以通过二分枚举最小值来求。假设当前的最小值为x,如果判断出最小差值为x时可以放下C头牛,就先让x变大再判断;如果放不下,说明当前的x太大了,就先让x变小然后再进行判断。直到求出一个最大的x就是最终的答案。

#include 
#include 
using namespace std;
int n,c;
int x[1000000002];
bool binary_search(int a){
    int temp=x[0];
    int cnt=1;
    for(int i=0;i=a){
            temp=x[i];
            cnt++;
            if(cnt>=c)
                return true;
        }
    }
    return false;
}
int main(){
    cin>>n>>c;
    for(int i=0;i>x[i];
    sort(x,x+n);
    int lb=1,rb=x[n-1]-x[0];
    int mid=0;
    while(lb<=rb){
        mid=(lb+rb)/2;
        if(binary_search(mid))
            lb=mid+1;
        else
            rb=mid-1;
    }
    cout<

你可能感兴趣的:(蓝桥杯,ACM,C/C++)