有了OpenMP,MPI,为什么还要MapReduce?

阅读更多
OpenMP和MPI是并行编程的两个手段,对比如下:
  • OpenMP:线程级(并行粒度);共享存储;隐式(数据分配方式);可扩展性差;
  • MPI:进程级;分布式存储;显式;可扩展性好。
OpenMP采用共享存储,意味着它只适应于SMP,DSM机器,不适合于集群。MPI虽适合于各种机器,但它的编程模型复杂:
  • 需要分析及划分应用程序问题,并将问题映射到分布式进程集合;
  • 需要解决通信延迟大和负载不平衡两个主要问题;
  • 调试MPI程序麻烦;
  • MPI程序可靠性差,一个进程出问题,整个程序将错误;
其中第2个问题感受深刻。每次听我们部门并行组的人做报告,总是听到他们在攻克通信延迟大和负载不平衡的问题。一种并行算法的好坏就看它有没有很好的解决这两个问题。

与OpenMP,MPI相比,MapReduce的优势何在呢?
  • 自动并行;
  • 容错;
  • MapReduce学习门槛低。
附:
  • SMP(Symmetric multi-processing),共享总线与内存,单一操作系统映象。在软件上是可扩展的,而硬件上不能。
  • DSM(distributed shared memory),SMP的扩展。物理上分布存储;单一内存地址空间;非一致内存访问;单一操作系统映象。

你可能感兴趣的:(Mapreduce,编程,多线程,算法,Google)