HashMap是java面试必不可少的问题之一,这里只列出了java1.8中比较难读懂的put操作的源码,get操作的源码请自行阅读。
申请内存是在第一次的put操作时进行的
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
// 如果大于等于2^30,直接返回旧的map
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 如果oldCap翻倍还在2~2^30之内,newCap和newThr翻倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
// 如果oldCap==0但是oldThr已被赋值
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
// 如果oldCap与oldThr都没被赋值,也就是创建对象的时候调用的是无参构造函数
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 如果newThr还没被赋值
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
// 用e遍历oldTab,重新赋值
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
// 如果一个bucket只有一个节点,直接把引用移过来,注意rehash了
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
// 如果是红黑树
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
// 如果不止一个节点,但还没达到变为红黑树的节点数(8)
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
// 举例子,olCap=16,put使用的是oldCap-1=15
// 0&15=0, 16&15=0, 32&15=0, 48&15=0
do {
next = e.next;
// 0&16=0, 32&16=0,这两个存到loHead链表
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
// 16&16=16, 48&16=16,这两个存到hiHead链表
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 将两个链表放入newTab的bucket里面去
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
// 添加成功则返回null,否则表示更新该key,返回旧value
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// HashMap在第一次put的时候才会申请内存
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 如果当前索引没有值,直接添加
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
// 当前索引有值
else {
Node<K,V> e; K k;
// 已存在k,赋值给e
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// 如果p是TreeNode,用putTreeVal插入;已存在则返回k,v对,添加成功则返回null
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
// 添加该节点
else {
for (int binCount = 0; ; ++binCount) {
// 在末尾添加该节点,跳出
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
// 链表大于8,变为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
// 已存在k,跳出
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// e为null表示添加成功,不为null表示已存在;已存在则更新value,返回旧value
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
// 大于阈值,则扩容,默认为16*0.75
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
// 已存在则返回节点,添加成功则返回null;更新操作不在这里
final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
int h, K k, V v) {
Class<?> kc = null;
boolean searched = false;
TreeNode<K,V> root = (parent != null) ? root() : this;
// 用p从root开始遍历
for (TreeNode<K,V> p = root;;) {
int dir, ph; K pk;
// p.hash大于h
if ((ph = p.hash) > h)
dir = -1;
// p.hash小于h
else if (ph < h)
dir = 1;
// 已存在,直接返回该节点,更新操作不在这里
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
// k.class为空 || p.k.class为空 || p.key.class不等于k.class
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0) {
// 没找到
if (!searched) {
TreeNode<K,V> q, ch;
searched = true;
// 从左右子树中找到,则返回;否则返回null
if (((ch = p.left) != null &&
(q = ch.find(h, k, kc)) != null) ||
((ch = p.right) != null &&
(q = ch.find(h, k, kc)) != null))
return q;
}
// 用native方法来识别p.key.class是否与k.class一致
dir = tieBreakOrder(k, pk);
}
TreeNode<K,V> xp = p;
// 遍历p,当p为空时,添加节点
if ((p = (dir <= 0) ? p.left : p.right) == null) {
Node<K,V> xpn = xp.next;
TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
if (dir <= 0)
xp.left = x;
else
xp.right = x;
xp.next = x;
x.parent = x.prev = xp;
if (xpn != null)
((TreeNode<K,V>)xpn).prev = x;
moveRootToFront(tab, balanceInsertion(root, x));
return null;
}
}
}
// 正确移除该值,返回node;没找到,返回null
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
// 如果当前bucket有值
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
// 找到要remove的值,赋给node
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
// 如果找到要remove的值,移除它
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
上面只解读了java1.8中的源码,但是一些细节性的因素并没有提及,比如
下面的这篇博客解释了一些原因:
https://blog.csdn.net/mbshqqb/article/details/79799009