几种方法代码:
#!usr/bin/python
#codeing: utf-8
'''
Create on 2018-08-09
Author: Gunther17
Ctrl + 1: 注释/反注释
Ctrl + 4/5: 块注释/块反注释
Ctrl + L: 跳转到行号
Tab/Shift + Tab: 代码缩进/反缩进
Ctrl +I:显示帮助
'''
import os.path
import csv
import time
import numpy as np
import pandas as pd
from sklearn.decomposition import PCA
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
data_dir='D:\data Competition\digit-recognizer/'
#加载数据
def opencsv():
data_train=pd.read_csv(os.path.join(data_dir,'input/train.csv'))
data_test=pd.read_csv(os.path.join(data_dir,'input/test.csv'))
train_data=data_train.values[0:,1:] #读入全部训练数据, [行,列]
train_label=data_train.values[0:,0] # 读取列表的第一列
test_data=data_test.values[0:,0:] # 测试全部测试个数据
return train_data,train_label,test_data
def saveResults(result,csvName):
with open(csvName,'w') as myfile:
'''
创建记录输出结果的文件(w 和 wb 使用的时候有问题)
python3里面对 str和bytes类型做了严格的区分,不像python2里面某些函数里可以混用。
所以用python3来写wirterow时,打开文件不要用wb模式,只需要使用w模式,然后带上newline=''
'''
mywrite=csv.writer(myfile)
mywrite.writerow(["ImageId","Label"])
index=0
for r in result:
index+=1
mywrite.writerow([index,int(r)])
print('Saved successfully....')
def knnClassify(traindata,trainlabel):
print('Train knn...')
knnClf=KNeighborsClassifier() # default:k = 5,defined by yourself:KNeighborsClassifier(n_neighbors=10)
knnClf.fit(traindata,np.ravel(trainlabel))# ravel/flattened 返回1维 array,其中flatten函数返回的是拷贝。.
return knnClf
def dtClassify(traindata,trainlabel):
print('Train decision tree...')
dtClf=DecisionTreeClassifier()
dtClf.fit(traindata,np.ravel(trainlabel))
return dtClf
def rfClassify(traindata,trainlabel):
print('Train Random forest...')
rfClf=RandomForestClassifier()
rfClf.fit(traindata,np.ravel(trainlabel))
return rfClf
def svmClassify(traindata,trainlabel):
print('Train svm...')
svmClf=SVC(C=4,kernel='rbf')
svmClf.fit(traindata,np.ravel(trainlabel))
return svmClf
def dpPCA(x_train,x_test,Com):
print('dimension reduction....')
trainData=np.array(x_train)
testData=np.array(x_test)
'''
n_components>=1
n_components=NUM 设置占特征数量比
0 < n_components < 1
n_components=0.99 设置阈值总方差占比
'''
pca=PCA(n_components=Com,whiten=False)
pca.fit(trainData) #fit the model with X
pcaTrainData=pca.transform(trainData)# 在 X上进行降维
pcaTestData=pca.transform(testData)
#pca 方差大小 方差占比 特征数量
# print(pca.explained_variance_,'\n',pca.explained_variance_ratio_,'\n',pca.components_)
return pcaTrainData,pcaTestData
def dRecognition_knn():
start_time=time.time()
#load data
trainData,trainLabel,testData=opencsv()
print('load data finish...')
stop_time1=time.time()
print('load data take: %f' %(stop_time1-start_time))
#dimension reduction
trainData,testData=dpPCA(trainData,testData,0.8)
knnClf=knnClassify(trainData,trainLabel)
dtClf=dtClassify(trainData,trainLabel)
rfClf=rfClassify(trainData,trainLabel)
svmClf=svmClassify(trainData,trainLabel)
trainlabel_knn=knnClf.predict(trainData)
trainlabel_dt=dtClf.predict(trainData)
trainlabel_rf=rfClf.predict(trainData)
trainlabel_svm=svmClf.predict(trainData)
knn_acc=accuracy_score(trainLabel,trainlabel_knn)
print('knn train accscore:%f'%(knn_acc))
dt_acc=accuracy_score(trainLabel,trainlabel_dt)
print('dt train accscore:%f'%(dt_acc))
rf_acc=accuracy_score(trainLabel,trainlabel_rf)
print('rf train accscore:%f'%(rf_acc))
svm_acc=accuracy_score(trainLabel,trainlabel_svm)
print('svm train accscore:%f'%(svm_acc))
testLabel_knn=knnClf.predict(testData)
testLabel_dt=dtClf.predict(testData)
testLabel_rf=rfClf.predict(testData)
testLabel_svm=svmClf.predict(testData)
saveResults(testLabel_knn,os.path.join(data_dir,'output/Result_knn.csv'))
saveResults(testLabel_dt,os.path.join(data_dir,'output/Result_dt.csv'))
saveResults(testLabel_rf,os.path.join(data_dir,'output/Result_rf.csv'))
saveResults(testLabel_svm,os.path.join(data_dir,'output/Result_svm.csv'))
print('knn dt rf svm process finished ....')
stop_time2=time.time()
print('knn classification take:%f' %(stop_time2-start_time))
if __name__=='__main__':
dRecognition_knn()
方法二 cnn待更新:
环境:windows10,64 python报错:
ImportError:no module named tensorflow.python
看来这里涉及到安装Win10下用Anaconda安装TensorFlow
解决方案:TensorFlow目前在Windows下只支持Python 3.5版本。
用Anaconda安装tensorflow, conda命令,这样tensorflow cpu版本就安装好了。
卸载了之前的 python 2.7
#!/usr/bin/python
# -*- coding: utf-8 -*-
"""
Created on Sat Aug 11 11:03:20 2018
@author: Gunther17
"""
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
import os
from keras.callbacks import ReduceLROnPlateau
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPool2D
from keras.models import Sequential
from keras.optimizers import RMSprop
from keras.preprocessing.image import ImageDataGenerator
from keras.utils.np_utils import to_categorical # convert to one-hot-encoding
np.random.seed(2)
# 数据路径
data_dir = 'D:\data Competition\digit-recognizer/'
# Load the data
train = pd.read_csv(os.path.join(data_dir, 'input/train.csv'))
test = pd.read_csv(os.path.join(data_dir, 'input/test.csv'))
X_train = train.values[:, 1:]
Y_train = train.values[:, 0]
test = test.values
# Normalization
X_train = X_train / 255.0
test = test / 255.0
# Reshape image in 3 dimensions (height = 28px, width = 28px , canal = 1)
X_train = X_train.reshape(-1, 28, 28, 1)
test = test.reshape(-1, 28, 28, 1)
# Encode labels to one hot vectors (ex : 2 -> [0,0,1,0,0,0,0,0,0,0])
Y_train = to_categorical(Y_train, num_classes=10)
# Set the random seed
random_seed = 2
# Split the train and the validation set for the fitting
X_train, X_val, Y_train, Y_val = train_test_split(
X_train, Y_train, test_size=0.1, random_state=random_seed)
# Set the CNN model
# my CNN architechture is In -> [[Conv2D->relu]*2 -> MaxPool2D -> Dropout]*2 -> Flatten -> Dense -> Dropout -> Out
model = Sequential()
model.add(
Conv2D(
filters=32,
kernel_size=(5, 5),
padding='Same',
activation='relu',
input_shape=(28, 28, 1)))
model.add(
Conv2D(
filters=32, kernel_size=(5, 5), padding='Same', activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(
Conv2D(
filters=64, kernel_size=(3, 3), padding='Same', activation='relu'))
model.add(
Conv2D(
filters=64, kernel_size=(3, 3), padding='Same', activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation="relu"))
model.add(Dropout(0.5))
model.add(Dense(10, activation="softmax"))
# Define the optimizer
optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
# Compile the model
model.compile(
optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"])
epochs = 30
batch_size = 86
# Set a learning rate annealer
learning_rate_reduction = ReduceLROnPlateau(
monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001)
datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180)
zoom_range=0.1, # Randomly zoom image
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.1, # randomly shift images vertically (fraction of total height)
horizontal_flip=False, # randomly flip images
vertical_flip=False) # randomly flip images
datagen.fit(X_train)
history = model.fit_generator(
datagen.flow(
X_train, Y_train, batch_size=batch_size),
epochs=epochs,
validation_data=(X_val, Y_val),
verbose=2,
steps_per_epoch=X_train.shape[0] // batch_size,
callbacks=[learning_rate_reduction])
# predict results
results = model.predict(test)
# select the indix with the maximum probability
results = np.argmax(results, axis=1)
results = pd.Series(results, name="Label")
submission = pd.concat(
[pd.Series(
range(1, 28001), name="ImageId"), results], axis=1)
submission.to_csv(os.path.join(data_dir, 'output/Result_keras_CNN.csv'),index=False)
print('finished')
参考 apachecn
参考2