具体见个人Python图书馆:https://ds-ebooks.github.io
两种magic
命令:
* Line magics
:%
,只接受该行的参数
* Cell magics
: %%
,只能用在cell
首行,%%
接收的magic
参数包括整个cell
,并且每个单元格只能用一个cell
# 列出可用的魔法命令
%lsmagic
Available line magics:
%alias %alias_magic %autocall %automagic %autosave %bookmark %cd %clear %cls %colors %config %connect_info %copy %ddir %debug %dhist %dirs %doctest_mode %echo %ed %edit %env %gui %hist %history %killbgscripts %ldir %less %load %load_ext %loadpy %logoff %logon %logstart %logstate %logstop %ls %lsmagic %macro %magic %matplotlib %mkdir %more %notebook %page %pastebin %pdb %pdef %pdoc %pfile %pinfo %pinfo2 %popd %pprint %precision %profile %prun %psearch %psource %pushd %pwd %pycat %pylab %qtconsole %quickref %recall %rehashx %reload_ext %ren %rep %rerun %reset %reset_selective %rmdir %run %save %sc %set_env %store %sx %system %tb %time %timeit %unalias %unload_ext %who %who_ls %whos %xdel %xmode
Available cell magics:
%%! %%HTML %%SVG %%bash %%capture %%cmd %%debug %%file %%html %%javascript %%js %%latex %%perl %%prun %%pypy %%python %%python2 %%python3 %%ruby %%script %%sh %%svg %%sx %%system %%time %%timeit %%writefile
Automagic is ON, % prefix IS NOT needed for line magics.
Magic
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
# %timeit计算代码执行时间
%timeit np.linalg.eigvals(np.random.rand(100,100))
100 loops, best of 3: 7.31 ms per loop
cell
代码运行时间%%timeit a = np.random.rand(100, 100)
np.linalg.eigvals(a)
100 loops, best of 3: 6.98 ms per loop
%%capture
捕获cell
输出stdout/stderr
%%capture capt
from __future__ import print_function
import sys
print('Hello stdout')
print('and stderr', file=sys.stderr)
capt.stdout,capt.stderr
('Hello stdout\n', 'and stderr\n')
capt.show()
Hello stdout
and stderr
%%capture result
有同样的功能%%capture result
print([1,2,3])
result.stdout
'[1, 2, 3]\n'
result.show()
[1, 2, 3]
%%scipy cell magic
%%writefile
我就不说了,IPython具有%%scipy
cell magic
,它允许您在系统上的任何解释器的子进程中运行cell
,例如:bash,ruby,perl,zsh,R
等,甚至自己的脚本也能运行.%%scipy
行上运行的程序,该脚本的其余部分将由该脚本运行,并捕获并显示子进程中的stdout/stderr
。%%script python
import sys
print 'hello from Python %s' % sys.version
hello from Python 2.7.13 (v2.7.13:a06454b1afa1, Dec 17 2016, 20:42:59) [MSC v.1500 32 bit (Intel)]
%%script python3
import sys
print('hello from Python: %s' % sys.version)
hello from Python: 3.6.3 (v3.6.3:2c5fed8, Oct 3 2017, 17:26:49) [MSC v.1900 32 bit (Intel)]
IPython
还为一些常见的解释器创建别名,例如bash,ruby,perl
等。
这些都等同于%% script
%%bash
echo "hello from $BASH"
hello from /usr/bin/bash
--out
--err
捕获cell
魔法的输出%%bash
echo "hi, stdout"
echo "hello, stderr" >&2
hi, stdout
hello, stderr
%%bash --out output --err error
echo "hi, stdout"
echo "hello, stderr" >&2
print(error)
print(output)
hello, stderr
hi, stdout
%matplotlib inline
import pylab as pl
pl.seed(1)
data = pl.randn(100)
pl.plot(data);
%config InlineBackend.figure_format="svg"
做图片输出格式的设置%config InlineBackend.figure_format="svg"
%matplotlib inline
pl.plot(data);
%xmode Plain
和原来的模式%xmode Verbose
def f1(a,b):
return a/b
def f2(x):
a = x
b = x-1
return f1(a,b)
# 精简模式
%xmode Plain
Exception reporting mode: Plain
f2(1)
Traceback (most recent call last):
File "", line 1, in
f2(1)
File "", line 6, in f2
return f1(a,b)
File "", line 2, in f1
return a/b
ZeroDivisionError: integer division or modulo by zero
# 原来的模式
%xmode Verbose
Exception reporting mode: Verbose
f2(1)
ZeroDivisionErrorTraceback (most recent call last)
in ()
----> 1 f2(1)
global f2 =
in f2(x=1)
4 a = x
5 b = x-1
----> 6 return f1(a,b)
global f1 =
a = 1
b = 0
in f1(a=1, b=0)
1 def f1(a,b):
----> 2 return a/b
a = 1
b = 0
3 def f2(x):
4 a = x
5 b = x-1
ZeroDivisionError: integer division or modulo by zero
%debug
用户调试错误使用%debug
会在报错时进去调试模式,在调试模式中我们可以
%timeit
和%time
%timeit
故名思义就是当前行代码运行时间,就是时间的意思%time
是程序运行到此处时的时间,就是时刻的意思%timeit sum(map(lambda x:x**2,range(100)))
10000 loops, best of 3: 18.5 µs per loop
%time sum(map(lambda x:x**2,range(100)))
Wall time: 0 ns
328350
%%prun/%prun
命令调用profile
模块,对单元中的代码进行宏观上的性能剖析%%prun
def fib(n):
if n<2:
return n
return fib(n-1)+fib(n-2)
fib(20)
像这样:
21893 function calls (3 primitive calls) in 0.009 seconds
Ordered by: internal time
ncalls tottime percall cumtime percall filename:lineno(function)
21891/1 0.009 0.000 0.009 0.009 :2(fib)
1 0.000 0.000 0.009 0.009 :2(<module>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
Jupyter攻略