[HNOI2018]道路(DP)

Description

咕咕咕。。。

Solution

f[u][i][j] f [ u ] [ i ] [ j ] 表示根节点到 u u 一共经过了 i i 条未修的铁路, j j 条未修的公路。
u u 是叶子节点,那么

f[u][i][j]=ci(ai+x)(bi+y) f [ u ] [ i ] [ j ] = c i ∗ ( a i + x ) ∗ ( b i + y )

否则
f[u][i][j]=min(f[lson][i][j]+f[rson][i][j+1],f[lson][i+1][j]+f[rson][i][j]) f [ u ] [ i ] [ j ] = m i n ( f [ l s o n ] [ i ] [ j ] + f [ r s o n ] [ i ] [ j + 1 ] , f [ l s o n ] [ i + 1 ] [ j ] + f [ r s o n ] [ i ] [ j ] )

#include 
using namespace std;

typedef long long lint;
const int maxn = 20005;

int n, a[maxn], b[maxn], c[maxn], ch[maxn][2];

lint f[maxn * 2][41][41];
int depa[maxn * 2], depb[maxn * 2];

void dfs(int u)
{
    if (u > n) {
        for (int i = 0; i <= depa[u]; ++i)
            for (int j = 0; j <= depb[u]; ++j)
                f[u][i][j] = (lint)c[u - n] * (a[u - n] + i) * (b[u - n] + j);
        return ;
    }
    depa[ch[u][0]] = depa[u] + 1;
    depb[ch[u][0]] = depb[u];
    dfs(ch[u][0]);

    depa[ch[u][1]] = depa[u];
    depb[ch[u][1]] = depb[u] + 1;
    dfs(ch[u][1]);

    for (int i = 0; i <= depa[u]; ++i)
        for (int j = 0; j <= depb[u]; ++j)
            f[u][i][j] = min(f[ch[u][0]][i][j] + f[ch[u][1]][i][j + 1], f[ch[u][0]][i + 1][j] + f[ch[u][1]][i][j]);
}

int main()
{
    scanf("%d", &n);
    for (int x, y, i = 1; i < n; ++i) {
        scanf("%d%d", &x, &y);
        if (x < 0) x = -x + n;
        if (y < 0) y = -y + n;
        ch[i][0] = x; ch[i][1] = y;
    }

    for (int i = 1; i <= n; ++i) 
        scanf("%d%d%d", &a[i], &b[i], &c[i]);

    dfs(1);

    printf("%lld\n", f[1][0][0]);

    return 0;
}

你可能感兴趣的:(文章类型——题解,算法——DP)