CS224n 词的向量表示word2vec 之cbow(softmax negSampling ):
#!/usr/bin/env python
import numpy as np
import random
from q1_softmax import softmax
from q2_gradcheck import gradcheck_naive
from q2_sigmoid import sigmoid, sigmoid_grad
def normalizeRows(x):
""" Row normalization function
Implement a function that normalizes each row of a matrix to have
unit length.
"""
### YOUR CODE HERE
denom = np.apply_along_axis(lambda x: np.sqrt(x.T.dot(x)), 1, x)
x /= denom[:, None]
### END YOUR CODE
return x
def test_normalize_rows():
print ("Testing normalizeRows...")
x = normalizeRows(np.array([[3.0, 4.0], [1, 2]]))
print (x)
ans = np.array([[0.6, 0.8], [0.4472136, 0.89442719]])
assert np.allclose(x, ans, rtol=1e-05, atol=1e-06)
print ("")
def softmaxCostAndGradient(predicted, target, outputVectors, dataset):
""" Softmax cost function for word2vec models
Implement the cost and gradients for one predicted word vector
and one target word vector as a building block for word2vec
models, assuming the softmax prediction function and cross
entropy loss.
Arguments:
predicted -- numpy ndarray, predicted word vector (\hat{v} in
the written component)
target -- integer, the index of the target word
outputVectors -- "output" vectors (as rows) for all tokens
dataset -- needed for negative sampling, unused here.
Return:
cost -- cross entropy cost for the softmax word prediction
gradPred -- the gradient with respect to the predicted word
vector
grad -- the gradient with respect to all the other word
vectors
We will not provide starter code for this function, but feel
free to reference the code you previously wrote for this
assignment!
"""
### YOUR CODE HERE
## Gradient for $\hat{\bm{v}}$:
# Calculate the predictions:
vhat = predicted
z = np.dot(outputVectors, vhat)
preds = softmax(z)
# Calculate the cost:
cost = -np.log(preds[target])
# Gradients
z = preds.copy()
z[target] -= 1.0 # Loss 对softmax求导 k=yi减1。
grad = np.outer(z, vhat)
gradPred = np.dot(outputVectors.T, z)
### END YOUR CODE
return cost, gradPred, grad
def getNegativeSamples(target, dataset, K):
""" Samples K indexes which are not the target """
indices = [None] * K
for k in range(K):
newidx = dataset.sampleTokenIdx()
while newidx == target:
newidx = dataset.sampleTokenIdx()
indices[k] = newidx
return indices
def negSamplingCostAndGradient(predicted, target, outputVectors, dataset,
K=10):
""" Negative sampling cost function for word2vec models
Implement the cost and gradients for one predicted word vector
and one target word vector as a building block for word2vec
models, using the negative sampling technique. K is the sample
size.
Note: See test_word2vec below for dataset's initialization.
Arguments/Return Specifications: same as softmaxCostAndGradient
"""
# Sampling of indices is done for you. Do not modify this if you
# wish to match the autograder and receive points!
indices = [target]
indices.extend(getNegativeSamples(target, dataset, K))
### YOUR CODE HERE
grad = np.zeros(outputVectors.shape)
gradPred = np.zeros(predicted.shape)
cost = 0
z = sigmoid(np.dot(outputVectors[target], predicted))
cost -= np.log(z)
grad[target] += predicted * (z - 1.0)
gradPred += outputVectors[target] * (z - 1.0)
for k in range(K):
samp = dataset.sampleTokenIdx()
z = sigmoid(np.dot(outputVectors[samp], predicted))
cost -= np.log(1.0 - z)
grad[samp] += predicted * z
gradPred += outputVectors[samp] * z
### END YOUR CODE
return cost, gradPred, grad
def skipgram(currentWord, C, contextWords, tokens, inputVectors, outputVectors,
dataset, word2vecCostAndGradient=softmaxCostAndGradient):
""" Skip-gram model in word2vec
Implement the skip-gram model in this function.
Arguments:
currrentWord -- a string of the current center word
C -- integer, context size
contextWords -- list of no more than 2*C strings, the context words
tokens -- a dictionary that maps words to their indices in
the word vector list
inputVectors -- "input" word vectors (as rows) for all tokens
outputVectors -- "output" word vectors (as rows) for all tokens
word2vecCostAndGradient -- the cost and gradient function for
a prediction vector given the target
word vectors, could be one of the two
cost functions you implemented above.
Return:
cost -- the cost function value for the skip-gram model
grad -- the gradient with respect to the word vectors
"""
cost = 0.0
gradIn = np.zeros(inputVectors.shape)
gradOut = np.zeros(outputVectors.shape)
### YOUR CODE HERE
cword_idx = tokens[currentWord]
vhat = inputVectors[cword_idx]
for j in contextWords:
u_idx = tokens[j]
c_cost, c_grad_in, c_grad_out = \
word2vecCostAndGradient(vhat, u_idx, outputVectors, dataset)
cost += c_cost
gradIn[cword_idx] += c_grad_in
gradOut += c_grad_out
### END YOUR CODE
return cost, gradIn, gradOut
def cbow(currentWord, C, contextWords, tokens, inputVectors, outputVectors,
dataset, word2vecCostAndGradient=softmaxCostAndGradient):
"""CBOW model in word2vec
Implement the continuous bag-of-words model in this function.
Arguments/Return specifications: same as the skip-gram model
Extra credit: Implementing CBOW is optional, but the gradient
derivations are not. If you decide not to implement CBOW, remove
the NotImplementedError.
"""
cost = 0.0
gradIn = np.zeros(inputVectors.shape)
gradOut = np.zeros(outputVectors.shape)
### YOUR CODE HERE
predicted_indices = [tokens[word] for word in contextWords]
predicted_vectors = inputVectors[predicted_indices]
predicted = np.sum(predicted_vectors, axis=0)
target = tokens[currentWord]
cost, gradIn_predicted, gradOut = word2vecCostAndGradient(predicted, target, outputVectors, dataset)
for i in predicted_indices:
gradIn[i] += gradIn_predicted
### END YOUR CODE
return cost, gradIn, gradOut
#############################################
# Testing functions below. DO NOT MODIFY! #
#############################################
def word2vec_sgd_wrapper(word2vecModel, tokens, wordVectors, dataset, C,
word2vecCostAndGradient=softmaxCostAndGradient):
batchsize = 50
cost = 0.0
grad = np.zeros(wordVectors.shape)
N = wordVectors.shape[0]
inputVectors = wordVectors[:N // 2, :]
outputVectors = wordVectors[N // 2:, :]
for i in range(batchsize):
C1 = random.randint(1, C)
centerword, context = dataset.getRandomContext(C1)
if word2vecModel == skipgram:
denom = 1
else:
denom = 1
c, gin, gout = word2vecModel(
centerword, C1, context, tokens, inputVectors, outputVectors,
dataset, word2vecCostAndGradient)
cost += c / batchsize / denom
grad[:N // 2, :] += gin / batchsize / denom
grad[N // 2:, :] += gout / batchsize / denom
return cost, grad
def test_word2vec():
""" Interface to the dataset for negative sampling """
dataset = type('dummy', (), {})() #类名,分类名,绑定方法
def dummySampleTokenIdx():
return random.randint(0, 4)
def getRandomContext(C):
tokens = ["a", "b", "c", "d", "e"]
return tokens[random.randint(0, 4)], \
[tokens[random.randint(0, 4)] for i in range(2 * C)]
dataset.sampleTokenIdx = dummySampleTokenIdx
dataset.getRandomContext = getRandomContext
random.seed(31415)
np.random.seed(9265)
dummy_vectors = normalizeRows(np.random.randn(10, 3))
dummy_tokens = dict([("a", 0), ("b", 1), ("c", 2), ("d", 3), ("e", 4)])
# =============================================================================
# print ("==== Gradient check for skip-gram ====")
# gradcheck_naive(lambda vec: word2vec_sgd_wrapper(
# skipgram, dummy_tokens, vec, dataset, 5, softmaxCostAndGradient),
# dummy_vectors)
# gradcheck_naive(lambda vec: word2vec_sgd_wrapper(
# skipgram, dummy_tokens, vec, dataset, 5, negSamplingCostAndGradient),
# dummy_vectors)
# print ("\n==== Gradient check for CBOW ====")
# gradcheck_naive(lambda vec: word2vec_sgd_wrapper(
# cbow, dummy_tokens, vec, dataset, 5, softmaxCostAndGradient),
# dummy_vectors)
# gradcheck_naive(lambda vec: word2vec_sgd_wrapper(
# cbow, dummy_tokens, vec, dataset, 5, negSamplingCostAndGradient),
# dummy_vectors)
#
# print ("\n=== Results ===")
# print (skipgram("c", 3, ["a", "b", "e", "d", "b", "c"],
# dummy_tokens, dummy_vectors[:5, :], dummy_vectors[5:, :], dataset))
#
# print ()
# print ("negSamplingCostAndGradient=====")
# print (skipgram("c", 1, ["a", "b"],
# dummy_tokens, dummy_vectors[:5, :], dummy_vectors[5:, :], dataset,
# negSamplingCostAndGradient))
#
# =============================================================================
print (" ")
print (" ")
print (cbow("a", 2, ["a", "b", "c", "a"],
dummy_tokens, dummy_vectors[:5, :], dummy_vectors[5:, :], dataset))
print (cbow("a", 2, ["a", "b", "a", "c"],
dummy_tokens, dummy_vectors[:5, :], dummy_vectors[5:, :], dataset,
negSamplingCostAndGradient))
if __name__ == "__main__":
test_normalize_rows()
test_word2vec()