证明一下拉普拉斯的《概率分析论》观点

证明拉普拉斯的《概率分析论》观点Demo

必要环境

  1. Nodejs
  2. npm
  3. coffeescript的npm包工具

单一demo结构清晰如下

结构

审题与证明步骤

题目:假设有四个盒子,一个是全部黑球(0),一个是全部白球(1),剩下两个黑白球不一。依次从一个盒子随机取一个球放到下一个盒子里面,再从下一个盒子里面随机取一个球放到再下一个盒子里面,依次循环。证明当N次后,所有盒子内部的黑白球比例一致。

立题假设:每个盒子有100个球,第一个全是黑球,第二个全是白球,第三个30个黑球70个白球,第四个30个白球70个黑球。然后随机取放,打印出每次取放后相应的球比例。

代码解答环节

  1. 模拟四个盒子

    box0 = []
    box1 = []
    box2 = []
    box3 = []
  2. 相关数据配置

    boxIndex = 0 # 盒子编号
    times = 0 # 起始次数
    maxTimes = 1e3 # 转移次数
  3. 填充盒子内部的球

    box0.push(0) for i in [0..99] # 第一个盒子全是0,即黑球
    box1.push(1) for i in [0..99] # 第二个盒子全是1,即白球
    for i in [0..99] # 第三个盒子0占30%
      if i < 30
        box2.push(0)
      else
        box2.push(1)
    
    for i in [0..99] # 第四个盒子1占30%
      if i < 30
        box3.push(1)
      else
        box3.push(0)
  4. 计算黑球,即0所占比例函数

    get0Radio = (array) ->
      array0 = array.filter((item) -> item is 0)
      (array0.length / array.length).toFixed(2)
  5. 换球操作函数,得是个递归啊

    changeNumber = ->
      box = eval("box#{boxIndex}") # 获取取数的盒子
      change = box.splice(Math.floor(Math.random() * 99), 1)[0] # 随机取出
      boxIndex += 1 # 盒子编号加一,即下个盒子
      boxIndex = 0 if boxIndex > 3 # 如果盒子编号越界,则回到第一个
      box = eval("box#{boxIndex}") # 获取下一个盒子
      box.splice(Math.floor(Math.random() * 99), 0, change) # 随机插入
      times += 1
      # 打印转以后的各个盒子0所占比例
      console.log get0Radio(box0), get0Radio(box1), get0Radio(box2), get0Radio(box3)
      return if times > maxTimes # 如果操作次数超过设定则跳出递归
      changeNumber() # 递归
  6. 游戏开始

    changeNumber()

这里是测试1000次的结果:

1.00 0.01 0.30 0.70
1.00 0.01 0.30 0.70
1.00 0.01 0.29 0.70
1.00 0.01 0.29 0.70
1.00 0.02 0.29 0.70
1.00 0.02 0.29 0.70
1.00 0.02 0.29 0.69
1.00 0.02 0.29 0.69
1.00 0.03 0.29 0.69
1.00 0.03 0.29 0.69
...
...
...
0.48 0.54 0.54 0.44
0.47 0.54 0.54 0.44
0.47 0.54 0.54 0.44
0.47 0.54 0.54 0.45
0.48 0.54 0.54 0.44
0.48 0.53 0.54 0.44
0.48 0.53 0.54 0.44
0.48 0.53 0.54 0.45
0.49 0.53 0.54 0.44
0.48 0.53 0.54 0.44

可以尝试将1e3换成1e4甚至更高,结果只会稳定在0.50左右,至此,证明完毕。。。


完整代码如下

# 四个盒子
box0 = []
box1 = []
box2 = []
box3 = []

boxIndex = 0 # 盒子编号
times = 0 # 起始次数
maxTimes = 1e3 # 转移次数

box0.push(0) for i in [0..99] # 第一个盒子全是0
box1.push(1) for i in [0..99] # 第二个盒子全是1
for i in [0..99] # 第三个盒子0占30%
  if i < 30
    box2.push(0)
  else
    box2.push(1)

for i in [0..99] # 第四个盒子1占30%
  if i < 30
    box3.push(1)
  else
    box3.push(0)

# 计算0所占比例函数
get0Radio = (array) ->
  array0 = array.filter((item) -> item is 0)
  (array0.length / array.length).toFixed(2)

# 移动数字
changeNumber = ->
  box = eval("box#{boxIndex}") # 获取取数的盒子
  change = box.splice(Math.floor(Math.random() * 99), 1)[0] # 随机取出
  boxIndex += 1 # 盒子编号加一,即下个盒子
  boxIndex = 0 if boxIndex > 3 # 如果盒子编号越界,则回到第一个
  box = eval("box#{boxIndex}") # 获取下一个盒子
  box.splice(Math.floor(Math.random() * 99), 0, change) # 随机插入
  times += 1
  # 打印转以后的各个盒子0所占比例
  console.log get0Radio(box0), get0Radio(box1), get0Radio(box2), get0Radio(box3)
  return if times > maxTimes # 如果操作次数超过设定则跳出递归
  changeNumber() # 递归

changeNumber() # 执行递归函数

源码相关

GitHub

CodePen

我会定期更新一下趣味Demo,有兴趣的请关注我,谢谢

你可能感兴趣的:(coffeescript,math)