floyd-warshall算法

Floyd算法

1.定义概览

Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。

 

2.算法描述

1)算法思想原理:

     Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)

      从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

2).算法描述:

a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。   

b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。

3).Floyd算法过程矩阵的计算----十字交叉法

方法:两条线,从左上角开始计算一直到右下角 如下所示

给出矩阵,其中矩阵A是邻接矩阵,而矩阵Path记录u,v两点之间最短路径所必须经过的点

相应计算方法如下:

最后A3即为所求结果

 

3.算法代码实现

复制代码
typedef struct          
{        
    char vertex[VertexNum];                                //顶点表         
    int edges[VertexNum][VertexNum];                       //邻接矩阵,可看做边表         
    int n,e;                                               //图中当前的顶点数和边数         
}MGraph; 

void Floyd(MGraph g)
{
   int A[MAXV][MAXV];
   int path[MAXV][MAXV];
   int i,j,k,n=g.n;
   for(i=0;i)
      for(j=0;j)
      {   
             A[i][j]=g.edges[i][j];
            path[i][j]=-1;
       }
   for(k=0;k)
   { 
        for(i=0;i)
           for(j=0;j)
               if(A[i][j]>(A[i][k]+A[k][j]))
               {
                     A[i][j]=A[i][k]+A[k][j];
                     path[i][j]=k;
                } 
     } 
} 

floyd算法

弗洛伊德(Floyd)算法过程:
1、用D[v][w]记录每一对顶点的最短距离。
2、依次扫描每一个点,并以其为基点再遍历所有每一对顶点D[][]的值,看看是否可用过该基点让这对顶点间的距离更小。


算法理解:
最短距离有三种情况:
1、两点的直达距离最短。(如下图
2、两点间只通过一个中间点而距离最短。(图
3、两点间用通过两各以上的顶点而距离最短。(图

对于第一种情况:在初始化的时候就已经找出来了且以后也不会更改到。
对于第二种情况:弗洛伊德算法的基本操作就是对于每一对顶点,遍历所有其它顶点,看看可否通过这一个顶点让这对顶点距离更短,也就是遍历了图中所有的三角形(算法中对同一个三角形扫描了九次,原则上只用扫描三次即可,但要加入判断,效率更低)。
对于第三种情况:如下图的五边形,可先找一点(比如x,使=2),就变成了四边形问题,再找一点(比如y,使=2),可变成三角形问题了(v,u,w),也就变成第二种情况了,由此对于n边形也可以一步步转化成四边形三角形问题。(这里面不用担心哪个点要先找哪个点要后找,因为找了任一个点都可以使其变成(n-1)边形的问题)。

floyd-warshall算法_第1张图片

floyd的核心代码:

 

for  (k = 0 ;k < g.vexnum;k ++ )
{
    
for  (i = 0 ;i < g.vexnum;i ++ )
    {
        
for  (j = 0 ;j < g.vexnum;j ++ )
        {
            
if  (distance[i][j] > distance[i][k] + distance[k][j])
            {
                distance[i][j]
= distance[i][k] + distance[k][j];
            }
        }
    }
}

 

结合代码 并参照上图所示 我们来模拟执行下 这样才能加深理解:
第一关键步骤:当k执行到x,i=v,j=u时,计算出v到u的最短路径要通过x,此时v、u联通了。
第二关键步骤:当k执行到u,i=v,j=y,此时计算出v到y的最短路径的最短路径为v到u,再到y(此时v到u的最短路径上一步我们已经计算过来,直接利用上步结果)。
第三关键步骤:当k执行到y时,i=v,j=w,此时计算出最短路径为v到y(此时v到y的最短路径长在第二步我们已经计算出来了),再从y到w。

依次扫描每一点(k),并以该点作为中介点,计算出通过k点的其他任意两点(i,j)的最短距离,这就是floyd算法的精髓!同时也解释了为什么k点这个中介点要放在最外层循环的原因.

 

// 多源最短路径,floyd_warshall算法,复杂度O(n^3)
// 求出所有点对之间的最短路经,传入图的大小和邻接阵
// 返回各点间最短距离min[]和路径pre[],pre[i][j]记录i到j最短路径上j的父结点
// 可更改路权类型,路权必须非负!
#define  MAXN 200
#define  inf 1000000000
typedef 
int  elem_t;

void  floyd_warshall( int  n,elem_t mat[][MAXN],elem_t min[][MAXN], int  pre[][MAXN]){
    
int  i,j,k;
    
for  (i = 0 ;i < n;i ++ )
        
for  (j = 0 ;j < n;j ++ )
            min[i][j]
= mat[i][j],pre[i][j] = (i == j) ?- 1 :i;
    
for  (k = 0 ;k < n;k ++ )
        
for  (i = 0 ;i < n;i ++ )
            
for  (j = 0 ;j < n;j ++ )
                
if  (min[i][k] + min[k][j] < min[i][j])
                    min[i][j]
= min[i][k] + min[k][j],pre[i][j] = pre[k][j];
}

你可能感兴趣的:(算法总结)