我们知道c++的内存管理是让很多人头疼的事,当我们写一个new语句时,一般就会立即把delete语句直接也写了,但是我们不能避免程序还未执行到delete时就跳转了或者在函数中没有执行到最后的delete语句就返回了,如果我们不在每一个可能跳转或者返回的语句前释放资源,就会造成内存泄露。使用智能指针可以很大程度上的避免这个问题,因为智能指针就是一个类,当超出了类的作用域是,类会自动调用析构函数,析构函数会自动释放资源
class Test
{
public:
Test(string s)
{
str = s;
cout<<"Test creat\n";
}
~Test()
{
cout<<"Test delete:"<<str<<endl;
}
string& getStr()
{
return str;
}
void setStr(string s)
{
str = s;
}
void print()
{
cout<<str<<endl;
}
private:
string str;
};
int main()
{
auto_ptr<Test> ptest(new Test("123"));
ptest->setStr("hello ");
ptest->print();
ptest.get()->print();
ptest->getStr() += "world !";
(*ptest).print();
ptest.reset(new Test("123"));
ptest->print();
return 0;
}
当我们对智能指针进行赋值时,如ptest2 = ptest,ptest2会接管ptest原来的内存管理权,ptest会变为空指针,如果ptest2原来不为空,则它会释放原来的资源,基于这个原因,应该避免把auto_ptr放到容器中,因为算法对容器操作时,很难避免STL内部对容器实现了赋值传递操作,这样会使容器中很多元素被置为NULL。判断一个智能指针是否为空不能使用if(ptest == NULL),应该使用if(ptest.get() == NULL)
还有一个值得我们注意的成员函数是release,这个函数只是把智能指针赋值为空,但是它原来指向的内存并没有被释放,相当于它只是释放了对资源的所有权
那么当我们想要在中途释放资源,而不是等到智能指针被析构时才释放,我们可以使用ptest.reset(); 语句
是用于取代c++98的auto_ptr的产物;
c++11当中有了移动语义,使用move()把unique_ptr传入函数,这样你就知道原先的unique_ptr已经失效了;
独享所有权的智能指针:
1、拥有它指向的对象
2、无法进行复制构造,无法进行复制赋值操作。即无法使两个unique_ptr指向同一个对象。但是可以进行移动构造和移动赋值操作
3、保存指向某个对象的指针,当它本身被删除释放的时候,会使用给定的删除器释放它指向的对象
unique_ptr 可以实现如下功能:
1、为动态申请的内存提供异常安全
2、将动态申请的内存所有权传递给某函数
3、从某个函数返回动态申请内存的所有权
4、在容器中保存指针
5、auto_ptr 应该具有的功能
unique_ptr<Test> fun()
{
return unique_ptr<Test>(new Test("789"));
}
int main()
{
unique_ptr<Test> ptest(new Test("123"));
unique_ptr<Test> ptest2(new Test("456"));
ptest->print();
ptest2 = std::move(ptest);//不能直接ptest2 = ptest
if(ptest == NULL)cout<<"ptest = NULL\n";
Test* p = ptest2.release();
p->print();
ptest.reset(p);
ptest->print();
ptest2 = fun(); //这里可以用=,因为使用了移动构造函数
ptest2->print();
return 0;
}
从名字share就可以看出了资源可以被多个指针共享,它使用计数机制来表明资源被几个指针共享。可以通过成员函数use_count()
来查看资源的所有者个数。出了可以通过new来构造,还可以通过传入auto_ptr, unique_ptr,weak_ptr
来构造。当我们调用release()
时,当前指针会释放资源所有权,计数减一。当计数等于0时,资源会被释放。
shared_ptr的创建,有两种方式:
一,使用函数make_shared(会根据传递的参数调用动态对象的构造函数); share_ptr
二,使用构造函数(可从原生指针、unique_ptr、另一个shared_ptr创建)
二者区别:
1) make_shared只分配一次内存,而new需要分配两次(首先会申请数据的内存,然后申请内控制块,因此是两次内存申请)
2) 因为make_shared只申请一次内存,因此控制块和数据块在一起,只有当控制块中不再使用时,内存才会释放,但是weak_ptr却使得控制块一直在使用
int main()
{
shared_ptr<Test> ptest(new Test("123"));
shared_ptr<Test> ptest2(new Test("456"));
cout<<ptest2->getStr()<<endl;
cout<<ptest2.use_count()<<endl;
ptest = ptest2;//"456"引用次数加1,“123”销毁
ptest->print();
cout<<ptest2.use_count()<<endl;//2
cout<<ptest.use_count()<<endl;//2
ptest.reset();
ptest2.reset();//此时“456”销毁
cout<<"done !\n";
return 0;
}
weak_ptr是用来解决shared_ptr相互引用时的死锁问题,如果说两个shared_ptr相互引用,那么这两个指针的引用计数永远不可能下降为0,资源永远不会释放。它是对对象的一种弱引用,不会增加对象的引用计数,和shared_ptr之间可以相互转化,shared_ptr可以直接赋值给它,它可以通过调用lock函数来获得shared_ptr
class B;
class A
{
public:
shared_ptr<B> pb_;
~A()
{
cout<<"A delete\n";
}
};
class B
{
public:
shared_ptr<A> pa_;
~B()
{
cout<<"B delete\n";
}
};
void fun()
{
shared_ptr<B> pb(new B());
shared_ptr<A> pa(new A());
pb->pa_ = pa;
pa->pb_ = pb;
cout<<pb.use_count()<<endl;
cout<<pa.use_count()<<endl;
}
int main()
{
fun();
return 0;
}
可以看到fun函数中pa ,pb之间互相引用,两个资源的引用计数为2,当要跳出函数时,智能指针pa,pb析构时两个资源引用计数会减一,但是两者引用计数还是为1,导致跳出函数时资源没有被释放(A B的析构函数没有被调用),如果把其中一个改为weak_ptr就可以了,我们把类A里面的shared_ptr pb_; 改为weak_ptr pb_; 运行结果如下,这样的话,资源B的引用开始就只有1,当pb析构时,B的计数变为0,B得到释放,B释放的同时也会使A的计数减一,同时pa析构时使A的计数减一,那么A的计数为0,A得到释放。
注意的是我们不能通过weak_ptr直接访问对象的方法,比如B对象中有一个方法print(),我们不能这样访问,pa->pb_->print(); 英文pb_是一个weak_ptr,应该先把它转化为shared_ptr,如:shared_ptr p = pa->pb_.lock(); p->print();