LeetCode 72. Edit Distance

72.Edit Distance(编辑距离)

 

题目:

  给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 。

  你可以对一个单词进行如下三种操作:

    1. 插入一个字符
    2. 删除一个字符
    3. 替换一个字符

思路:

  多次选择试图得到最优解,那么考虑动态规划。

  先假设word1有len1位,word2有len2位,建立数组step,step[i][j]就代表我们要将word1前 i 位转换为word2前 j 位的最少数量。

  此时word1查找到第 i+1 位字母a,word2查找到第 j+1 位字母b,我们直接比较这两个字母,能得到两种情况:

  1.a=b:那么就不需要操作,此时word1前 i+1 位替换为word2前 j+1 位只需要step[i][j]步

    即为   step[ i+1 ][ j+1 ] = step[ i ][ j ] 

  2.a!=b:就要在给定的三种操作方式中选择最优解,再增加一步操作即可

    即为   step[ i+1 ][ j+1 ] = Min(num1,num2,num3);

  最后得到的step[ i ][ j ]就是最短编辑距离。

 

图解:

  首先建立数组,将红色部分赋值,之后开始按照顺序计算,从word1转换为word2,step[ i ][ j ]就是最短编辑距离,step[ i-1][ j ]就是插入,step[ i ][ j-1 ]就是删除,step[ i-1 ][ j-1 ]就是修改,如果不相同就从三种决策中寻找最小值加一,相同就直接添加,值等于step[ i-1 ][ j-1 ]。

  例如AB->ABC(大号红色字体),B和C不同,左侧(AB->AB)0次,左上(A->AB)1次,上方(A->ABC)2次,选择三种情况最小值,再进行一步操作(左侧AB->AB->ABC),只需要1次。

  或者ABDC->ABC(大号蓝色字体),C与C相同,直接进行左上(ABD->AB-ABC),也只需要1次。

  LeetCode 72. Edit Distance_第1张图片

 

代码:

  

	public static int minDistance(String word1, String word2) 
	{
		int len1 = word1.length();
	    int len2 = word2.length();
	
	    int[][] step = new int[len1 + 1][len2 + 1];
	 
	    for (int i = 0; i <= len1; i++) 
	        step[i][0] = i;
	    for (int j = 0; j <= len2; j++) 
	        step[0][j] = j;
	    
	    for (int i = 1; i <= len1; i++) 
	    {
	        char letter1 = word1.charAt(i-1);
	        for (int j = 1; j <= len2; j++) 
	        {
	            char letter2 = word2.charAt(j-1);

	            if (letter1 == letter2) 
	            {   //若字母相同,即直接添加,不增加步数         
	                step[i][j] = step[i-1][j-1];
	            } 
	            else 
	            { 
	                int ReNum = step[i-1][j-1] + 1;
	                //修改
	                int InNum = step[i-1][j] + 1;
	                //插入
	                int DeNum = step[i][j-1] + 1;
	                //删除
	                int min = Math.min(ReNum,Math.min(InNum, DeNum));
	                step[i][j] = min;
	            }
	        }
	    }
	    return step[len1][len2];
    }

  

 

 

    

你可能感兴趣的:(LeetCode 72. Edit Distance)