期末大作业

一、boston房价预测

#1.读取数据
from sklearn.datasets import load_boston   #导入房价数据集
boston=load_boston() 
boston.data               #读取房价数据
boston.target
boston.data.shape

#2. 训练集与测试集划分

from sklearn.cross_validation  import train_test_split
x_train, x_test, y_train, y_test = train_test_split(boston.data,boston.target,test_size=0.3)
x_train.shape
y_train.shape

#3.线性回归模型:建立13个变量与房价之间的预测模型,并检测模型好坏。
from sklearn.linear_model import LinearRegression
LineR=LinearRegression()    #线性回归
LineR.fit(x_train,y_train)         #对数据进行训练
print(LineR.coef_,LineR.intercept_)     #通过数据训练得出回归方程的斜率和截距

from sklearn.metrics import regression    # 检测模型好坏
y_pred= LineR.predict(x_test)
print("预测的均方误差:", regression.mean_squared_error(y_test,y_pred))    # 计算模型的预测指标
print("预测的平均绝对误差:", regression.mean_absolute_error(y_test,y_pred))
print("模型的分数:",LineR.score(x_test, y_test))    # 输出模型的分数

期末大作业_第1张图片

#4.多项式回归模型:建立13个变量与房价之间的预测模型,并检测模型好坏。
from sklearn.preprocessing import PolynomialFeatures
poly=PolynomialFeatures(degree=2)
x_poly_train=poly.fit_transform(x_train)
LineR=LinearRegression()           #建立多项回归模型
LineR.fit(x_poly_train,y_train)   

x_poly_test=poly.transform(x_test)   #多项回归预测模型
y_pred1=LineR.predict(x_poly_test)

# 检测模型好坏
print("预测的均方误差:", regression.mean_squared_error(y_test,y_pred1))
print("预测的平均绝对误差:", regression.mean_absolute_error(y_test,y_pred1))  # 计算模型的预测指标
print("模型的分数:",LineR.score(x_poly_test, y_test))    # 输出模型的分数

期末大作业_第2张图片

 
 
5. 比较线性模型与非线性模型的性能,并说明原因:

非线性模型的模型性能较好,因为它是有很多点连接而成的曲线,对样本的拟合程度较高,而且多项式模型是一条平滑的曲线,更贴合样本点的分布,预测效果误差较小。



二、中文文本分类

import os
import numpy as np
import sys
from datetime import datetime
import gc
path = 'F:\\jj147'


# 导入结巴库,并将需要用到的词库加进字典
import jieba
# 导入停用词:
with open(r'F:\stopsCN.txt', encoding='utf-8') as f:
    stopwords = f.read().split('\n')

def processing(tokens):
    # 去掉非字母汉字的字符
    tokens = "".join([char for char in tokens if char.isalpha()])
    # 结巴分词
    tokens = [token for token in jieba.cut(tokens,cut_all=True) if len(token) >=2]
    # 去掉停用词
    tokens = " ".join([token for token in tokens if token not in stopwords])
    return tokens

tokenList = []
targetList = []
# 用os.walk获取需要的变量,并拼接文件路径再打开每一个文件
for root,dirs,files in os.walk(path):
    for f in files:
        filePath = os.path.join(root,f)
        with open(filePath, encoding='utf-8') as f:
            content = f.read()
            # 获取新闻类别标签,并处理该新闻
        target = filePath.split('\\')[-2]
        targetList.append(target)
        tokenList.append(processing(content))


#划分训练集和测试,用TF-IDF算法进行单词权值的计算
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
vectorizer= TfidfVectorizer()
x_train,x_test,y_train,y_test=train_test_split(tokenList,targetList,test_size=0.2)
X_train=vectorizer.fit_transform(x_train)
X_test=vectorizer.transform(x_test)


#构建贝叶斯模型
from sklearn.naive_bayes import MultinomialNB #用于离散特征分类,文本分类单词统计,以出现的次数作为特征值
mulp=MultinomialNB ()
mulp_NB=mulp.fit(X_train,y_train)
#对模型进行预测
y_predict=mulp.predict(X_test)
# # 从sklearn.metrics里导入classification_report做分类的性能报告
from sklearn.metrics import classification_report
print('模型的准确率为:', mulp.score(X_test, y_test))
print('classification_report:\n',classification_report(y_test, y_predict))

期末大作业_第3张图片

# 将预测结果和实际结果进行对比
import collections
import matplotlib.pyplot as plt

# 统计测试集和预测集的各类新闻个数
testCount = collections.Counter(y_test)
predCount = collections.Counter(y_predict)
print('实际:',testCount,'\n', '预测', predCount)

# 建立标签列表,实际结果列表,预测结果列表,
nameList = list(testCount.keys())
testList = list(testCount.values())
predictList = list(predCount.values())
x = list(range(len(nameList)))
print("新闻类别:",nameList,'\n',"实际:",testList,'\n',"预测:",predictList)

期末大作业_第4张图片

你可能感兴趣的:(期末大作业)