- 为什么让AI洗碗比写诗难百倍?清华教授揭秘具身智能鸿沟
Loving_enjoy
计算机学科论文创新点机器学习人工智能facebook课程设计
>**人类小脑数亿年进化出的运动智慧,成了AI最难破解的密码**2025年3月,一位网友困惑地发问:“我想让人工智能替我洗碗做饭洗衣服,没想到现在的AI反而在画画、写歌、搞创作……”对此,全国政协委员、中国科学院自动化研究所研究员赵晓光一针见血地指出:**“大模型没有创新能力,想让AI干体力活还要靠具身智能的发展。”**这个看似矛盾的现象背后,隐藏着人工智能发展进程中一个惊人的认知盲区。清华大学心
- 【论文阅读】Dynamic Few-Shot Visual Learning without Forgetting
Bosenya12
论文阅读
系统概述如下:(a)一个基于卷积神经网络(ConvNet)的识别模型,该模型包含特征提取器和分类器;(b)一个少样本分类权重生成器。这两个组件都是在一组基础类别上训练的,我们为这些类别准备了大量训练数据。在测试阶段,权重生成器会接收少量新类别的训练数据以及基础类别的分类权重向量(分类器框内的绿色矩形),并为新类别生成相应的分类权重向量(分类器框内的蓝色矩形)。这样,卷积神经网络就能同时识别基础类别
- 扩散模型中的 Transformer:图像生成及其延展应用询问 ChatGPT
DeepSeek大模型官方教程
transformerchatgpt深度学习自然语言处理人工智能ai大模型学习
扩散模型近年来在生成逼真但合成的连续媒体内容方面引起了广泛关注。本次演讲将介绍Transformer在图像生成的扩散模型中的应用,并进一步探讨其更广泛的前景。我们首先简要介绍扩散模型的基础知识以及它们的训练方式,从而建立基本背景。接着,我们讲解曾是扩散模型事实标准的基于UNet的网络架构,这将帮助我们理解引入Transformer架构并推动其发展的动因。随后,我们将深入探讨构成基础架构的核心模块,
- PDF 的开发工具库: Adobe PDF Library
纸上笔下
AcroBatpdfadobeSDKAPI标准签名接口
AdobePDFLibrary是Adobe公司提供的一个软件开发工具包(SDK),它本质上是AdobeAcrobat的"无界面"版本,但功能更为强大。作为PDF处理领域的专业解决方案,它为开发者提供了创建、操作和管理PDF文档的全面能力。1many1many1manyAdobePDFLibrary+createPDF()+manipulatePDF()+extractData()+renderPD
- 【论文阅读】Few-Shot PPG Signal Generation via Guided Diffusion Models
Bosenya12
论文阅读
从少量样本数据选择到后处理的整体框架。首先,扩散模型在N样本数据集和指导下的训练。接着,模型生成一个增强的数据集,并进一步优化以提高保真度。最后,这些合成数据与少量样本训练数据集结合,用于基准模型的训练和评估。数据分布从最初的红色变为保真度增强的蓝色,这表明模型与真实数据更加吻合,如简化后的数据分布示意图所示。这篇文章的核心内容是介绍了一种名为BG-Diff(Bi-GuidedDiffusion)
- 从被动检索到主动思考:Naive RAG 到 Agentic RAG 的架构演进与关键技术解析
一休哥助手
人工智能架构RAG
摘要随着大语言模型(LLMs)的广泛应用,检索增强生成(Retrieval-AugmentedGeneration,RAG)技术已成为解决模型知识滞后与幻觉问题的核心方案。本文深入剖析从基础NaiveRAG到新一代AgenticRAG的架构演进路径,聚焦关键技术创新点(如递归检索、自适应查询改写、工具集成、多智能体协作),并通过架构图对比与案例分析,揭示其在复杂任务处理中的范式转变。全文超过500
- HarmonyOS开发秘籍:从监听系统变量到掌握AbilityStage回调
大雨淅淅
#HarmonyOS开发harmonyos华为
目录一、HarmonyOS开发新视野二、AbilityStage组件初相识(一)组件定义与作用(二)与Module的对应关系三、开发前的准备工作(一)创建AbilityStage文件步骤(二)导入依赖与配置文件四、监听系统环境变量变化实战(一)关键代码解析(二)回调函数触发机制五、AbilityStage其他回调函数探秘(一)onAcceptWant()(二)onMemoryLevel()(三)o
- 【零基础学AI】第29讲:BERT模型实战 - 情感分析
1989
0基础学AIbert人工智能深度学习神经网络cnnpython自然语言处理
本节课你将学到BERT模型的核心原理与优势HuggingFaceTransformers库的BERT接口使用情感分析任务的完整实现流程模型微调(Fine-tuning)技巧开始之前环境要求Python3.8+需要安装的包:pipinstalltorchtransformersdatasetspandastqdmGPU推荐(可加速训练)前置知识第28讲Transformer基础基本PyTorch使用
- 【零基础学AI】第27讲:注意力机制(Attention) - 机器翻译实战
1989
0基础学AI人工智能机器翻译自然语言处理pythontensorflow机器学习神经网络
本节课你将学到理解注意力机制的核心思想掌握注意力计算的数学原理实现基于注意力机制的Seq2Seq模型构建英语到法语的神经翻译系统开始之前环境要求Python3.8+需要安装的包:tensorflow==2.8.0numpy==1.21.0matplotlib==3.4.0pandas==1.3.0前置知识RNN/LSTM原理(第26讲)序列数据处理(第26讲)自然语言处理基础(第14讲)核心概念为
- 【scl】博图程序的导入和导出
peace..
西门子1200windows经验分享学习其他
导入或者导出博图文件的方法(也叫移植文件)目录前言编辑编辑前言本篇文章主要写一下关于博图文件的导入和导出,具体要怎么样才能将写好的程序或者块移植到其他地方,下面我们一起来看!一、程序块的导入和导出程序块包含FC块,FB块;注意:需要是SCL语言编写的程序块才可以导出源文件!导出步骤:找到要导出的程序块---->右键单击----->选择从块生成源---->可以选着一个块或关联块---->将文件保存-
- TensorFlow图神经网络(GNN)入门指南
AI天才研究院
AI人工智能与大数据tensorflow神经网络人工智能ai
TensorFlow图神经网络(GNN)入门指南关键词:TensorFlow、图神经网络、GNN、深度学习、图数据、节点嵌入、图卷积网络摘要:本文全面介绍如何使用TensorFlow实现图神经网络(GNN)。我们将从图数据的基本概念开始,深入探讨GNN的核心原理,包括图卷积网络(GCN)、图注意力网络(GAT)等流行架构,并通过TensorFlow代码示例展示如何构建和训练GNN模型。文章还将涵盖
- STM32串口DMA方式向上位机连续发送接收数据
Justinlevy
stm32单片机arm
目录一、DMA初步应用1、DMA含义2、DMA传输四要素3、使用区别4、DMA的应用场景5、DMA传输方式6、DMA中断二、创建项目1、STM32CubeMX创建1.1设置SYS1.2设置RCC1.3设置USART1.4DMA设置1.5时钟设置1.6文件配置2、KEIL代码配置2.1main.c文件代码2.2while循环中代码2.3编译烧录2.4运行结果三、DMA总结四、参考一、DMA初步应用1
- 笔记本屏幕亮度忽明忽暗是怎么回事?
当你正在沉浸在写代码、编辑文档或者观看影片的时候,笔记本屏幕突然变暗,或者瞬间又变得刺眼,这不仅打断了你的专注,还可能对眼睛造成伤害。这种屏幕亮度的忽明忽暗,往往令人不悦,也引发了对电脑硬件或软件出现问题的担忧。那么,为什么会出现这种情况呢?更重要的是,我们该如何解决这一问题呢?在本文中,我将与大家分享笔记本屏幕亮度不稳定的可能原因及相应的解决方法,希望能够帮助你迅速恢复屏幕的正常亮度,让你的工作
- HarmonyOS多语言支持:如何实现语言资源智能分发
操作系统内核探秘
操作系统内核揭秘harmonyos华为ai
HarmonyOS多语言支持:如何实现语言资源智能分发关键词:HarmonyOS、多语言支持、资源分发、智能调度、动态加载、国际化、本地化摘要:本文深入解析HarmonyOS多语言资源管理体系,系统阐述从基础架构设计到智能分发算法的核心技术。通过剖析资源目录结构、配置文件语法、动态加载机制等底层原理,结合自适应优先级调度算法和数学匹配模型,展示如何实现基于用户习惯、设备环境、区域特征的智能资源分发
- Python实现布林带策略完整代码
程序化交易助手
量化软件Python程序化交易Python量化炒股PTradeQMT量化交易量化软件deepseek
Python实现布林带策略完整代码布林带是个啥玩意儿?我见过太多新手一上来就问"布林带能不能赚钱",这问题就跟问"菜刀能不能切菜"一样。布林带就是个工具,关键看你怎么用。简单来说,它就是在均线上下画两条通道线,股价大部分时间都在这个通道里晃悠。记得去年有个客户,拿着布林带当圣杯,结果亏得妈都不认识。后来我给他看了我的Python策略代码,这哥们才明白原来工具要配合仓位管理和止损。现在他账户已经翻倍
- 同花顺复权怎么设置?股价真实走势还原!
同花顺复权怎么设置?股价真实走势还原!复权是什么?为什么炒股必须懂这个?很多新手打开股票软件,看到贵州茅台从几十块涨到上千块,第一反应是"哇,这股票涨了上百倍!"但如果你看的是不复权的价格,这个结论就大错特错了。复权就是把股票历史上的分红、送股、配股等因素考虑进去,还原股价的真实走势。比如一只股票现在价格是10元,去年10送10(每10股送10股),那么去年这个时候的实际股价应该是20元,而不是软
- 《王者荣耀》游戏优化的AI革命:从性能提升到生态治理
AI编程员
001AI传统&编程语言002AI编程工具汇总003AI编程作品汇总人工智能笔记学习深度学习游戏
目录:AI技术进化历程:使用时间轴和表格介绍“绝悟”AI从基础操作到职业水平的成长过程,以及“开悟”平台的技术外溢效应。性能优化策略:通过终端适配方案表格,分析预计算烘焙、多线程优化等技术如何解决亿级用户的设备兼容问题。游戏环境治理:列举AI接管、违规检测等机制如何应对挂机、摆烂等破坏公平性的行为。产业技术外溢:说明游戏AI如何向智能制造、自动驾驶等领域输出协作决策模型。伦理争议:探讨“超规格能力
- Oracle数据库对象与模式设计
关键词:Oracle数据库设计、表结构、约束、索引优化、视图、序列、分区表✅摘要在企业级数据库开发中,良好的数据库对象设计和模式规划是构建高性能、可维护系统的基础。Oracle提供了丰富的数据库对象支持复杂业务场景,包括:表结构与完整性约束索引类型选择与性能调优视图、序列、同义词等辅助对象分区表提升查询效率一、表结构与约束1.创建表(CREATETABLE)与数据类型Oracle支持多种数据类型,
- Vulkan多线程录制Command Buffer高效指南
你一身傲骨怎能输
渲染管线CommandBuffer
文章摘要Vulkan支持多线程并行录制CommandBuffer以提升CPU效率,需遵循以下原则:每个线程使用独立CommandPool避免竞争合理分配渲染任务确保负载均衡避免线程间共享资源修改主线程统一提交所有CommandBuffer实现时需为每个线程创建独立CommandPool和CommandBuffer,任务分块后多线程并行录制,最后同步提交。注意资源隔离、同步机制及CommandPoo
- 使用oracle序列
创建序列:CREATESEQUENCEXXXXX_SEQUENCE使用序列:selectXXXXX_SEQUENCE.nextvalfromdual
- React——基础
贵沫末
react.js前端前端框架
文章目录React基础一、基础概念二、组件化三、状态四、属性五、项目初始化六、jsx七、创建React组件的两种方式函数式组件(推荐)类组件(不推荐)八、常用的hooks1、useState:用来修改状态值2、useReducer:用来修改状态值,比useState更适合处理复杂逻辑3、useContext:传递数据4、useMemo:缓存计算结果5、useCallback:缓存函数6、useEf
- 前端开发常见问题(从布局到性能优化)
白仑色
前端系列前端开发HTMLCSSJavaScript性能优化响应式布局跨域
前端开发作为连接用户与产品的重要桥梁,涉及HTML、CSS和JavaScript的综合运用。但在实际开发过程中,开发者常常会遇到各种“坑”,比如页面布局异常、跨域请求失败、性能瓶颈、浏览器兼容性差等问题。本文将围绕前端开发中常见的十大问题展开讲解:页面布局相关问题(盒模型、浮动、Flex布局)CSS样式冲突与继承JavaScript异步处理(Promise、async/await)跨域问题及解决方
- 【机器学习笔记 Ⅲ】3 异常检测算法
巴伦是只猫
机器学习机器学习笔记算法
异常检测算法(AnomalyDetection)详解异常检测是识别数据中显著偏离正常模式的样本(离群点)的技术,广泛应用于欺诈检测、故障诊断、网络安全等领域。以下是系统化的解析:1.异常类型类型描述示例点异常单个样本明显异常信用卡交易中的天价消费上下文异常在特定上下文中异常(如时间序列)夏季气温突降至零下集体异常一组相关样本联合表现为异常网络流量中突然的DDOS攻击流量2.常用算法(1)基于统计的
- 【机器学习笔记 Ⅲ】4 特征选择
巴伦是只猫
机器学习机器学习笔记人工智能
特征选择(FeatureSelection)系统指南特征选择是机器学习中优化模型性能的关键步骤,通过筛选最相关、信息量最大的特征,提高模型精度、降低过拟合风险并加速训练。以下是完整的特征选择方法论:1.特征选择的核心目标提升模型性能:去除噪声和冗余特征,增强泛化能力。降低计算成本:减少训练和预测时间。增强可解释性:简化模型,便于业务理解。2.特征选择方法分类(1)过滤法(FilterMethods
- LangChain核心组件全解析
北辰alk
AIlangchain
文章目录一、核心架构组件1.模型I/O(ModelI/O)2.检索(Retrieval)3.记忆(Memory)4.链(Chains)5.代理(Agents)二、关键支持组件1.回调系统(Callbacks)2.文档加载器(DocumentLoaders)3.文本分割器(TextSplitters)4.向量存储(VectorStores)三、高级架构组件1.工具集成(Tools)2.工作流(Wor
- 机器学习笔记二-回归
回归是统计学和机器学习中的一种基本方法,用于建模变量之间的关系,特别是用一个或多个自变量(输入变量)来预测一个因变量(输出变量)的值。回归分析广泛应用于预测、趋势分析和关联研究中。根据目标和数据的性质,可以使用不同类型的回归方法。1.回归的基本概念:自变量(IndependentVariable):也称为预测变量、解释变量,是模型中的输入变量,用于预测或解释因变量的变化。因变量(Dependent
- OpenHarmony解读之设备认证:Pake协议详解与实战
陈乔布斯
鸿蒙开发HarmonyOSOpenHarmonyharmonyos分布式鸿蒙开发软总线openHarmony嵌入式硬件
往期推文全新看点(文中附带最新·鸿蒙全栈学习笔记)①鸿蒙应用开发与鸿蒙系统开发哪个更有前景?②嵌入式开发适不适合做鸿蒙南向开发?看完这篇你就了解了~③对于大前端开发来说,转鸿蒙开发究竟是福还是祸?④鸿蒙岗位需求突增!移动端、PC端、IoT到底该怎么选?⑤记录一场鸿蒙开发岗位面试经历~⑥持续更新中……一、概述在设备认证过程中,pake协议用于认证会话密钥协商,基于该会话密钥,双方可以安全地交换各自的
- AI LLM架构与原理 - 预训练模型深度解析
陈乔布斯
AI人工智能大模型人工智能架构机器学习深度学习大模型PythonAI
一、引言在人工智能领域,大型语言模型(LLM)的发展日新月异,预训练模型作为LLM的核心技术,为模型的强大性能奠定了基础。预训练模型通过在大规模无标注数据上进行学习,能够捕捉语言的通用模式和语义信息,从而在各种自然语言处理任务中展现出卓越的能力。本文将深入探讨AILLM架构与原理中预训练模型的方法论和技术,结合图解、代码解析和实际案例,为读者呈现一个全面且易懂的预训练模型图景。二、预训练模型的基本
- PHP 协程
SiegeLionQi
PHPphp协程yield
协程,又称微线程,纤程。英文名Coroutine。PHP官方文档的解释:生成器提供了一种更容易的方法来实现简单的对象迭代,相比较定义类实现Iterator接口的方式,性能开销和复杂性大大降低。生成器允许你在foreach代码块中写代码来迭代一组数据而不需要在内存中创建一个数组,那会使你的内存达到上限,或者会占据可观的处理时间。相反,你可以写一个生成器函数,就像一个普通的自定义函数一样,和普通函数只
- Claude Code 深夜也要加班?这个神器让 AI 自动续命!
terryso
AI编程AI编程
你有没有遇到过这种情况?晚上熬夜用ClaudeCode写代码,正写到关键时刻,突然弹出:"Claudeusagelimitreached.恢复时间:凌晨3点"这时候你可能已经困得睁不开眼,但又舍不得放弃手头的工作进度…解决方案来了!今天给大家推荐一个开源神器:ClaudeAutoResume,让你的ClaudeCode可以"自动续命"!它是怎么工作的?智能检测:自动监控Claude使用限制倒计时等
- JVM StackMapTable 属性的作用及理解
lijingyao8206
jvm字节码Class文件StackMapTable
在Java 6版本之后JVM引入了栈图(Stack Map Table)概念。为了提高验证过程的效率,在字节码规范中添加了Stack Map Table属性,以下简称栈图,其方法的code属性中存储了局部变量和操作数的类型验证以及字节码的偏移量。也就是一个method需要且仅对应一个Stack Map Table。在Java 7版
- 回调函数调用方法
百合不是茶
java
最近在看大神写的代码时,.发现其中使用了很多的回调 ,以前只是在学习的时候经常用到 ,现在写个笔记 记录一下
代码很简单:
MainDemo :调用方法 得到方法的返回结果
- [时间机器]制造时间机器需要一些材料
comsci
制造
根据我的计算和推测,要完全实现制造一台时间机器,需要某些我们这个世界不存在的物质
和材料...
甚至可以这样说,这种材料和物质,我们在反应堆中也无法获得......
 
- 开口埋怨不如闭口做事
邓集海
邓集海 做人 做事 工作
“开口埋怨,不如闭口做事。”不是名人名言,而是一个普通父亲对儿子的训导。但是,因为这句训导,这位普通父亲却造就了一个名人儿子。这位普通父亲造就的名人儿子,叫张明正。 张明正出身贫寒,读书时成绩差,常挨老师批评。高中毕业,张明正连普通大学的分数线都没上。高考成绩出来后,平时开口怨这怨那的张明正,不从自身找原因,而是不停地埋怨自己家庭条件不好、埋怨父母没有给他创造良好的学习环境。
- jQuery插件开发全解析,类级别与对象级别开发
IT独行者
jquery开发插件 函数
jQuery插件的开发包括两种: 一种是类级别的插件开发,即给
jQuery添加新的全局函数,相当于给
jQuery类本身添加方法。
jQuery的全局函数就是属于
jQuery命名空间的函数,另一种是对象级别的插件开发,即给
jQuery对象添加方法。下面就两种函数的开发做详细的说明。
1
、类级别的插件开发 类级别的插件开发最直接的理解就是给jQuer
- Rome解析Rss
413277409
Rome解析Rss
import java.net.URL;
import java.util.List;
import org.junit.Test;
import com.sun.syndication.feed.synd.SyndCategory;
import com.sun.syndication.feed.synd.S
- RSA加密解密
无量
加密解密rsa
RSA加密解密代码
代码有待整理
package com.tongbanjie.commons.util;
import java.security.Key;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerat
- linux 软件安装遇到的问题
aichenglong
linux遇到的问题ftp
1 ftp配置中遇到的问题
500 OOPS: cannot change directory
出现该问题的原因:是SELinux安装机制的问题.只要disable SELinux就可以了
修改方法:1 修改/etc/selinux/config 中SELINUX=disabled
2 source /etc
- 面试心得
alafqq
面试
最近面试了好几家公司。记录下;
支付宝,面试我的人胖胖的,看着人挺好的;博彦外包的职位,面试失败;
阿里金融,面试官人也挺和善,只不过我让他吐血了。。。
由于印象比较深,记录下;
1,自我介绍
2,说下八种基本类型;(算上string。楼主才答了3种,哈哈,string其实不是基本类型,是引用类型)
3,什么是包装类,包装类的优点;
4,平时看过什么书?NND,什么书都没看过。。照样
- java的多态性探讨
百合不是茶
java
java的多态性是指main方法在调用属性的时候类可以对这一属性做出反应的情况
//package 1;
class A{
public void test(){
System.out.println("A");
}
}
class D extends A{
public void test(){
S
- 网络编程基础篇之JavaScript-学习笔记
bijian1013
JavaScript
1.documentWrite
<html>
<head>
<script language="JavaScript">
document.write("这是电脑网络学校");
document.close();
</script>
</h
- 探索JUnit4扩展:深入Rule
bijian1013
JUnitRule单元测试
本文将进一步探究Rule的应用,展示如何使用Rule来替代@BeforeClass,@AfterClass,@Before和@After的功能。
在上一篇中提到,可以使用Rule替代现有的大部分Runner扩展,而且也不提倡对Runner中的withBefores(),withAfte
- [CSS]CSS浮动十五条规则
bit1129
css
这些浮动规则,主要是参考CSS权威指南关于浮动规则的总结,然后添加一些简单的例子以验证和理解这些规则。
1. 所有的页面元素都可以浮动 2. 一个元素浮动后,会成为块级元素,比如<span>,a, strong等都会变成块级元素 3.一个元素左浮动,会向最近的块级父元素的左上角移动,直到浮动元素的左外边界碰到块级父元素的左内边界;如果这个块级父元素已经有浮动元素停靠了
- 【Kafka六】Kafka Producer和Consumer多Broker、多Partition场景
bit1129
partition
0.Kafka服务器配置
3个broker
1个topic,6个partition,副本因子是2
2个consumer,每个consumer三个线程并发读取
1. Producer
package kafka.examples.multibrokers.producers;
import java.util.Properties;
import java.util.
- zabbix_agentd.conf配置文件详解
ronin47
zabbix 配置文件
Aliaskey的别名,例如 Alias=ttlsa.userid:vfs.file.regexp[/etc/passwd,^ttlsa:.:([0-9]+),,,,\1], 或者ttlsa的用户ID。你可以使用key:vfs.file.regexp[/etc/passwd,^ttlsa:.: ([0-9]+),,,,\1],也可以使用ttlsa.userid。备注: 别名不能重复,但是可以有多个
- java--19.用矩阵求Fibonacci数列的第N项
bylijinnan
fibonacci
参考了网上的思路,写了个Java版的:
public class Fibonacci {
final static int[] A={1,1,1,0};
public static void main(String[] args) {
int n=7;
for(int i=0;i<=n;i++){
int f=fibonac
- Netty源码学习-LengthFieldBasedFrameDecoder
bylijinnan
javanetty
先看看LengthFieldBasedFrameDecoder的官方API
http://docs.jboss.org/netty/3.1/api/org/jboss/netty/handler/codec/frame/LengthFieldBasedFrameDecoder.html
API举例说明了LengthFieldBasedFrameDecoder的解析机制,如下:
实
- AES加密解密
chicony
加密解密
AES加解密算法,使用Base64做转码以及辅助加密:
package com.wintv.common;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import sun.misc.BASE64Decod
- 文件编码格式转换
ctrain
编码格式
package com.test;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
- mysql 在linux客户端插入数据中文乱码
daizj
mysql中文乱码
1、查看系统客户端,数据库,连接层的编码
查看方法: http://daizj.iteye.com/blog/2174993
进入mysql,通过如下命令查看数据库编码方式: mysql> show variables like 'character_set_%'; +--------------------------+------
- 好代码是廉价的代码
dcj3sjt126com
程序员读书
长久以来我一直主张:好代码是廉价的代码。
当我跟做开发的同事说出这话时,他们的第一反应是一种惊愕,然后是将近一个星期的嘲笑,把它当作一个笑话来讲。 当他们走近看我的表情、知道我是认真的时,才收敛一点。
当最初的惊愕消退后,他们会用一些这样的话来反驳: “好代码不廉价,好代码是采用经过数十年计算机科学研究和积累得出的最佳实践设计模式和方法论建立起来的精心制作的程序代码。”
我只
- Android网络请求库——android-async-http
dcj3sjt126com
android
在iOS开发中有大名鼎鼎的ASIHttpRequest库,用来处理网络请求操作,今天要介绍的是一个在Android上同样强大的网络请求库android-async-http,目前非常火的应用Instagram和Pinterest的Android版就是用的这个网络请求库。这个网络请求库是基于Apache HttpClient库之上的一个异步网络请求处理库,网络处理均基于Android的非UI线程,通
- ORACLE 复习笔记之SQL语句的优化
eksliang
SQL优化Oracle sql语句优化SQL语句的优化
转载请出自出处:http://eksliang.iteye.com/blog/2097999
SQL语句的优化总结如下
sql语句的优化可以按照如下六个步骤进行:
合理使用索引
避免或者简化排序
消除对大表的扫描
避免复杂的通配符匹配
调整子查询的性能
EXISTS和IN运算符
下面我就按照上面这六个步骤分别进行总结:
- 浅析:Android 嵌套滑动机制(NestedScrolling)
gg163
android移动开发滑动机制嵌套
谷歌在发布安卓 Lollipop版本之后,为了更好的用户体验,Google为Android的滑动机制提供了NestedScrolling特性
NestedScrolling的特性可以体现在哪里呢?<!--[if !supportLineBreakNewLine]--><!--[endif]-->
比如你使用了Toolbar,下面一个ScrollView,向上滚
- 使用hovertree菜单作为后台导航
hvt
JavaScriptjquery.nethovertreeasp.net
hovertree是一个jquery菜单插件,官方网址:http://keleyi.com/jq/hovertree/ ,可以登录该网址体验效果。
0.1.3版本:http://keleyi.com/jq/hovertree/demo/demo.0.1.3.htm
hovertree插件包含文件:
http://keleyi.com/jq/hovertree/css
- SVG 教程 (二)矩形
天梯梦
svg
SVG <rect> SVG Shapes
SVG有一些预定义的形状元素,可被开发者使用和操作:
矩形 <rect>
圆形 <circle>
椭圆 <ellipse>
线 <line>
折线 <polyline>
多边形 <polygon>
路径 <path>
- 一个简单的队列
luyulong
java数据结构队列
public class MyQueue {
private long[] arr;
private int front;
private int end;
// 有效数据的大小
private int elements;
public MyQueue() {
arr = new long[10];
elements = 0;
front
- 基础数据结构和算法九:Binary Search Tree
sunwinner
Algorithm
A binary search tree (BST) is a binary tree where each node has a Comparable key (and an associated value) and satisfies the restriction that the key in any node is larger than the keys in all
- 项目出现的一些问题和体会
Steven-Walker
DAOWebservlet
第一篇博客不知道要写点什么,就先来点近阶段的感悟吧。
这几天学了servlet和数据库等知识,就参照老方的视频写了一个简单的增删改查的,完成了最简单的一些功能,使用了三层架构。
dao层完成的是对数据库具体的功能实现,service层调用了dao层的实现方法,具体对servlet提供支持。
&
- 高手问答:Java老A带你全面提升Java单兵作战能力!
ITeye管理员
java
本期特邀《Java特种兵》作者:谢宇,CSDN论坛ID: xieyuooo 针对JAVA问题给予大家解答,欢迎网友积极提问,与专家一起讨论!
作者简介:
淘宝网资深Java工程师,CSDN超人气博主,人称“胖哥”。
CSDN博客地址:
http://blog.csdn.net/xieyuooo
作者在进入大学前是一个不折不扣的计算机白痴,曾经被人笑话过不懂鼠标是什么,