1.jdk安装hadoop集群的搭建,不再详述,参考 http://kevin12.iteye.com/blog/2273556;
下面运行下hadoop自带的wordcount例子:
2.先将hadoop-2.6.0目录下面的README.txt和LICENSE.txt文件put到集群的/library/hadoop/data目录下面,如果目录不存在先创建;
root@master1:/usr/local/hadoop/hadoop-2.6.0# hdfs dfs -mkdir /library/hadoop/data root@master1:/usr/local/hadoop/hadoop-2.6.0# hdfs dfs -put ./LICENSE.txt /library/hadoop/data root@master1:/usr/local/hadoop/hadoop-2.6.0# hdfs dfs -put ./README.txt /library/hadoop/data root@master1:/usr/local/hadoop/hadoop-2.6.0/share/hadoop/mapreduce# hadoop jar hadoop-mapreduce-examples-2.6.0.jar wordcount /library/hadoop/data /library/hadoop/wordcount_output1 16/02/12 12:49:06 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 16/02/12 12:49:07 INFO client.RMProxy: Connecting to ResourceManager at master1/192.168.112.130:8032 16/02/12 12:49:08 INFO input.FileInputFormat: Total input paths to process : 2 16/02/12 12:49:08 INFO mapreduce.JobSubmitter: number of splits:2 16/02/12 12:49:08 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1455236431298_0002 16/02/12 12:49:09 INFO impl.YarnClientImpl: Submitted application application_1455236431298_0002 16/02/12 12:49:09 INFO mapreduce.Job: The url to track the job: http://master1:8088/proxy/application_1455236431298_0002/ 16/02/12 12:49:09 INFO mapreduce.Job: Running job: job_1455236431298_0002 16/02/12 12:49:20 INFO mapreduce.Job: Job job_1455236431298_0002 running in uber mode : false 16/02/12 12:49:20 INFO mapreduce.Job: map 0% reduce 0% 16/02/12 12:49:30 INFO mapreduce.Job: map 100% reduce 0% 16/02/12 12:49:42 INFO mapreduce.Job: map 100% reduce 100% 16/02/12 12:49:42 INFO mapreduce.Job: Job job_1455236431298_0002 completed successfully 16/02/12 12:49:43 INFO mapreduce.Job: Counters: 49 File System Counters FILE: Number of bytes read=12822 FILE: Number of bytes written=342551 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=17026 HDFS: Number of bytes written=8943 HDFS: Number of read operations=9 HDFS: Number of large read operations=0 HDFS: Number of write operations=2 Job Counters Launched map tasks=2 Launched reduce tasks=1 Data-local map tasks=2 Total time spent by all maps in occupied slots (ms)=17371 Total time spent by all reduces in occupied slots (ms)=7667 Total time spent by all map tasks (ms)=17371 Total time spent by all reduce tasks (ms)=7667 Total vcore-seconds taken by all map tasks=17371 Total vcore-seconds taken by all reduce tasks=7667 Total megabyte-seconds taken by all map tasks=17787904 Total megabyte-seconds taken by all reduce tasks=7851008 Map-Reduce Framework Map input records=320 Map output records=2336 Map output bytes=24790 Map output materialized bytes=12828 Input split bytes=231 Combine input records=2336 Combine output records=886 Reduce input groups=838 Reduce shuffle bytes=12828 Reduce input records=886 Reduce output records=838 Spilled Records=1772 Shuffled Maps =2 Failed Shuffles=0 Merged Map outputs=2 GC time elapsed (ms)=526 CPU time spent (ms)=2190 Physical memory (bytes) snapshot=476704768 Virtual memory (bytes) snapshot=5660733440 Total committed heap usage (bytes)=260173824 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=16795 File Output Format Counters Bytes Written=8943 #查看结果,这里只截取一部分内容: root@master1:/usr/local/hadoop/hadoop-2.6.0/share/hadoop/mapreduce# hdfs dfs -cat /library/hadoop/wordcount_output1/part-r-00000 16/02/12 12:51:33 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable "AS 4 "Contribution" 1 "Contributor" 1 "Derivative 1 "Legal 1 "License" 1 "License"); 1 "Licensor" 1 "NOTICE" 1 "Not 1 "Object" 1 "Source" 1 "Work" 1 "You" 1 "Your") 1 "[]" 1 "control" 1 "printed 1 "submitted" 1
也可以通过浏览器查看文件内容,将/library/hadoop/wordcount_output1目录下面的part-r-00000文件下载打开查看即可:

3.下载eclipse liunx版64位的,直接去eclipse官网下载,不再详述;
4.将下载好的eclipse解压到/usr/local/目录下面,进入eclipse目录,执行eclipse,打开eclipse,工作空间选择默认(/root/workspace)即可。
5.本地开发hadoop程序调试运行需要hadoop-eclipse-plugin-2.6.0.jar,将该jar包拷贝到/usr/local/eclipse目录下面的plugins目录下面。在eclipse中选择File->restart重启eclipse,重启打开后选择Window->Show View->Other选中MapReduceTools下面的Map/Reduce Locations并将点击OK。

6.创建Hadoop Location,在下面的Map/Reduce Locations中新建一个Hadoop location,配置好Host和Port后保存,选择Java EE的浏览方式,在Project Explorer下面就可以看到DFS Loations,并且显示了集群的根目录文件信息。



7.指定hadoop的安装目录,选择Window->Preferences->Data Management选中Hadoop Map/Reduce在右面的页签中点击“Browse..."按钮,选择hadoop的安装目录,然后点击Apply,并保存退出。

8.创建项目,点击File->New->Other,在弹出框中选择Map/Reduce Project.点击Next,填写项目名称,点击Finish,在弹出框中选择ok,eclipse自动会将hadoop安装目录下的架包引用进来,这样我们就可以开发MapReduce程序了。




9.关联源码.
首先将hadoop-2.6.0-src.tar.gz拷贝到虚拟机中并解压到/usr/local/hadoop目录下,并用tar命令解压缩;
再按Shift+Ctrl+T组合键,在弹出框中输入NameNode选择Hadoop的NamedNodeMap,在class页签中点击Attach Source,在弹出的对话框中选择External location,并点击Extenal Folder按钮选择刚才解压缩的源码hadoop-2.6.0-src,点击OK就可以关联上源码了。



10.运行WordCount例子
解压缩源码,在hadoop-2.6.0-src\hadoop-mapreduce-project\hadoop-mapreduce-examples\src\main\java\org\apache\hadoop\examples中找到WordCount.java文件,拷贝到HadoopApps的com.imf.hadoop包中(如果包不存在先创建);
WordCount源码如下:
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.imf.hadoop; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class WordCount { public static class TokenizerMapper extends Mapper
然后选择WordCount右键->Run As->Run Configruations,在Java Application中选择WordCount在右面的页签中配置Arguments的Program arguments参数如下:hdfs://master1:9000/library/hadoop/data hdfs://master1:9000/library/hadoop/wordcount_output1,点击Apply,并点击Run按钮运行。

11.查看结果:在浏览器中查看会发现输出目录中会多出part-r-00000文件,这个就是我们统计的结果,也可以用命令hdfs dfs -cat /library/hadoop/wordcount_output1/part-r-00000查看。
注意,如果输出目录已经存在则运行会报错,可以更改一个目录或者删除该目录再次运行即可;

12.下面将WordCount打包成jar文件在集群中运行。
右键HadoopApps选择Export,再弹出框中选择jar文件,点击Next,然后选择jar文件输出的目录,我输出的位置是/usr/local/tools 文件名称为HadoopApps.jar,然后一路Next即可。
注意:在最后一步不指定主函数,而是在运行jar包时进行指定,因为这样做有助于测试其他项目。


13.运行jar文件
root@master1:/usr/local/tools# hadoop jar HadoopApps.jar com.imf.hadoop.WordCount hdfs://master1:9000/library/hadoop/data/ hdfs://master1:9000/library/hadoop/wordcount_output2 16/02/13 14:36:58 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 16/02/13 14:36:59 INFO client.RMProxy: Connecting to ResourceManager at master1/192.168.112.130:8032 16/02/13 14:37:00 INFO input.FileInputFormat: Total input paths to process : 2 16/02/13 14:37:00 INFO mapreduce.JobSubmitter: number of splits:2 16/02/13 14:37:01 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1455315784285_0004 16/02/13 14:37:01 INFO impl.YarnClientImpl: Submitted application application_1455315784285_0004 16/02/13 14:37:01 INFO mapreduce.Job: The url to track the job: http://master1:8088/proxy/application_1455315784285_0004/ 16/02/13 14:37:01 INFO mapreduce.Job: Running job: job_1455315784285_0004 16/02/13 14:37:08 INFO mapreduce.Job: Job job_1455315784285_0004 running in uber mode : false 16/02/13 14:37:08 INFO mapreduce.Job: map 0% reduce 0% 16/02/13 14:37:19 INFO mapreduce.Job: map 100% reduce 0% 16/02/13 14:37:26 INFO mapreduce.Job: map 100% reduce 100% 16/02/13 14:37:27 INFO mapreduce.Job: Job job_1455315784285_0004 completed successfully 16/02/13 14:37:28 INFO mapreduce.Job: Counters: 49 File System Counters FILE: Number of bytes read=12822 FILE: Number of bytes written=342443 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=17026 HDFS: Number of bytes written=8943 HDFS: Number of read operations=9 HDFS: Number of large read operations=0 HDFS: Number of write operations=2 Job Counters Launched map tasks=2 Launched reduce tasks=1 Data-local map tasks=2 Total time spent by all maps in occupied slots (ms)=17479 Total time spent by all reduces in occupied slots (ms)=4161 Total time spent by all map tasks (ms)=17479 Total time spent by all reduce tasks (ms)=4161 Total vcore-seconds taken by all map tasks=17479 Total vcore-seconds taken by all reduce tasks=4161 Total megabyte-seconds taken by all map tasks=17898496 Total megabyte-seconds taken by all reduce tasks=4260864 Map-Reduce Framework Map input records=320 Map output records=2336 Map output bytes=24790 Map output materialized bytes=12828 Input split bytes=231 Combine input records=2336 Combine output records=886 Reduce input groups=838 Reduce shuffle bytes=12828 Reduce input records=886 Reduce output records=838 Spilled Records=1772 Shuffled Maps =2 Failed Shuffles=0 Merged Map outputs=2 GC time elapsed (ms)=387 CPU time spent (ms)=2030 Physical memory (bytes) snapshot=483635200 Virtual memory (bytes) snapshot=5660704768 Total committed heap usage (bytes)=259067904 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=16795 File Output Format Counters Bytes Written=8943
打开浏览器,点击part-r-00000下载并查看:


两次运行结果进行比较,结果是一样的。