1.Example
使用Spark MLlib中决策树分类器API,训练出一个决策树模型,使用Python开发。
""" Decision Tree Classification Example. """from __future__ import print_functionfrom pyspark import SparkContextfrom pyspark.mllib.tree import DecisionTree, DecisionTreeModelfrom pyspark.mllib.util import MLUtilsif __name__ == "__main__": sc = SparkContext(appName="PythonDecisionTreeClassificationExample") # 加载和解析数据文件为RDD dataPath = "/home/zhb/Desktop/work/DecisionTreeShareProject/app/sample_libsvm_data.txt" print(dataPath) data = MLUtils.loadLibSVMFile(sc,dataPath) # 将数据集分割为训练数据集和测试数据集 (trainingData,testData) = data.randomSplit([0.7,0.3]) print("train data count: " + str(trainingData.count())) print("test data count : " + str(testData.count())) # 训练决策树分类器 # categoricalFeaturesInfo 为空,表示所有的特征均为连续值 model = DecisionTree.trainClassifier(trainingData, numClasses=2, categoricalFeaturesInfo={}, impurity='gini', maxDepth=5, maxBins=32) # 测试数据集上预测 predictions = model.predict(testData.map(lambda x: x.features)) # 打包真实值与预测值 labelsAndPredictions = testData.map(lambda lp: lp.label).zip(predictions) # 统计预测错误的样本的频率 testErr = labelsAndPredictions.filter(lambda (v, p): v != p).count() / float(testData.count()) print('Decision Tree Test Error = %5.3f%%'%(testErr*100)) print("Decision Tree Learned classifiction tree model : ") print(model.toDebugString()) # 保存和加载训练好的模型 modelPath = "/home/zhb/Desktop/work/DecisionTreeShareProject/app/myDecisionTreeClassificationModel" model.save(sc, modelPath) sameModel = DecisionTreeModel.load(sc, modelPath)
2.决策树源码分析
决策树分类器API为DecisionTree.trainClassifier,进入源码分析。
源码文件所在路径为,spark-1.6/mllib/src/main/scala/org/apache/spark/mllib/tree/DecisionTree.scala。
@Since("1.1.0") def trainClassifier( input: RDD[LabeledPoint], numClasses: Int, categoricalFeaturesInfo: Map[Int, Int], impurity: String, maxDepth: Int, maxBins: Int): DecisionTreeModel = { val impurityType = Impurities.fromString(impurity) train(input, Classification, impurityType, maxDepth, numClasses, maxBins, Sort, categoricalFeaturesInfo) }
训练出一个分类器,然后调用了train方法。
@Since("1.0.0") def train( input: RDD[LabeledPoint], algo: Algo, impurity: Impurity, maxDepth: Int, numClasses: Int, maxBins: Int, quantileCalculationStrategy: QuantileStrategy, categoricalFeaturesInfo: Map[Int, Int]): DecisionTreeModel = { val strategy = new Strategy(algo, impurity, maxDepth, numClasses, maxBins, quantileCalculationStrategy, categoricalFeaturesInfo) new DecisionTree(strategy).run(input) }
train方法首先将模型类型(分类或者回归)、信息增益指标、决策树深度、分类数目、最大切分箱子数等参数封装为Strategy,然后新建一个DecisionTree对象,并调用run方法。
@Since("1.0.0")class DecisionTree private[spark] (private val strategy: Strategy, private val seed: Int) extends Serializable with Logging { /** * @param strategy The configuration parameters for the tree algorithm which specify the type * of decision tree (classification or regression), feature type (continuous, * categorical), depth of the tree, quantile calculation strategy, etc. */ @Since("1.0.0") def this(strategy: Strategy) = this(strategy, seed = 0) strategy.assertValid() /** * Method to train a decision tree model over an RDD * * @param input Training data: RDD of `org`.`apache`.`spark`.`mllib`.`regression`.`LabeledPoint`. * @return DecisionTreeModel that can be used for prediction. */ @Since("1.2.0") def run(input: RDD[LabeledPoint]): DecisionTreeModel = { val rf = new RandomForest(strategy, numTrees = 1, featureSubsetStrategy = "all", seed = seed) val rfModel = rf.run(input) rfModel.trees(0) } }
run方法中首先新建一个RandomForest对象,将strategy、决策树数目设置为1,子集选择策略为"all"传递给RandomForest对象,然后调用RandomForest中的run方法,最后返回随机森林模型中的第一棵决策树。
也就是,决策树模型使用了随机森林模型进行训练,将决策树数目设置为1,然后将随机森林模型中的第一棵决策树作为结果,返回作为决策树训练模型。
3.随机森林源码分析
随机森林的源码文件所在路径为,spark-1.6/mllib/src/main/scala/org/apache/spark/mllib/tree/RandomForest.scala。
private class RandomForest ( private val strategy: Strategy, private val numTrees: Int, featureSubsetStrategy: String, private val seed: Int) extends Serializable with Logging { strategy.assertValid() require(numTrees > 0, s"RandomForest requires numTrees > 0, but was given numTrees = $numTrees.") require(RandomForest.supportedFeatureSubsetStrategies.contains(featureSubsetStrategy) || Try(featureSubsetStrategy.toInt).filter(_ > 0).isSuccess || Try(featureSubsetStrategy.toDouble).filter(_ > 0).filter(_ <= 1.0).isSuccess, s"RandomForest given invalid featureSubsetStrategy: $featureSubsetStrategy." + s" Supported values: ${NewRFParams.supportedFeatureSubsetStrategies.mkString(", ")}," + s" (0.0-1.0], [1-n].") /** * Method to train a decision tree model over an RDD * * @param input Training data: RDD of `org`.`apache`.`spark`.`mllib`.`regression`.`LabeledPoint`. * @return RandomForestModel that can be used for prediction. */ def run(input: RDD[LabeledPoint]): RandomForestModel = { val trees: Array[NewDTModel] = NewRandomForest.run(input.map(_.asML), strategy, numTrees, featureSubsetStrategy, seed.toLong, None) new RandomForestModel(strategy.algo, trees.map(_.toOld)) } }
在该文件开头,通过"import org.apache.spark.ml.tree.impl.{RandomForest => NewRandomForest}"将ml中的RandomForest引入,重新命名为NewRandomForest。
在RandomForest.run方法中,首先新建NewRandomForest模型,并调用该类的run方法,然后将生成的trees作为新建RandomForestModel的入参。
NewRandomForest,源码文件所在路径为,spark-1.6/mllib/src/main/scala/org/apache/spark/ml/tree/impl/RandomForest.scala。
由于涉及代码量较大,因此无法将代码展开,run方法主要有如下调用。
run方法 --->1. val metadata = DecisionTreeMetadata.buildMetadata(retaggedInput, strategy, numTrees,featureSubsetStrategy) # 对输入数据建立元数据--->2. val splits = findSplits(retaggedInput, metadata, seed) # 对元数据中的特征进行切分 --->2.1 计算采样率,对输入样本进行采样 --->2.2 findSplitsBySorting(sampledInput, metadata, continuousFeatures) # 对采样后的样本中的特征进行切分 --->2.2.1 val thresholds = findSplitsForContinuousFeature(samples, metadata, idx) # 针对连续型特征 --->2.2.2 val categories = extractMultiClassCategories(splitIndex + 1, featureArity) # 针对分类型特征,且特征无序 --->2.2.3 Array.empty[Split] # 针对分类型特征,且特征有序,训练时直接构造即可--->3. val treeInput = TreePoint.convertToTreeRDD(retaggedInput, splits, metadata) # 将输入数据转换为树形数据 --->3.1 input.map { x => TreePoint.labeledPointToTreePoint(x, thresholds, featureArity) # 将LabeledPoint数据转换为TreePoint数据 --->3.2 arr(featureIndex) = findBin(featureIndex, labeledPoint, featureArity(featureIndex), thresholds(featureIndex)) # 在(labeledPoint,feature)中找出一个离散值--->4. val baggedInput = BaggedPoint.convertToBaggedRDD(treeInput, strategy.subsamplingRate, numTrees,withReplacement, seed) # 对输入数据进行采样 --->4.1 convertToBaggedRDDSamplingWithReplacement(input, subsamplingRate, numSubsamples, seed) #有放回采样 --->4.2 convertToBaggedRDDWithoutSampling(input) # 样本数为1,采样率为100% --->4.3 convertToBaggedRDDSamplingWithoutReplacement(input, subsamplingRate, numSubsamples, seed) # 无放回采样--->5. val (nodesForGroup, treeToNodeToIndexInfo) = RandomForest.selectNodesToSplit(nodeQueue, maxMemoryUsage,metadata, rng) # 取得每棵树所有需要切分的结点 --->5.1 val featureSubset: Option[Array[Int]] = if (metadata.subsamplingFeatures) { Some(SamplingUtils.reservoirSampleAndCount(Range(0, metadata.numFeatures).iterator, metadata.numFeaturesPerNode, rng.nextLong())._1)} # 如果需要子采样,选择特征子集 --->5.2 val nodeMemUsage = RandomForest.aggregateSizeForNode(metadata, featureSubset) * 8L # 计算添加这个结点之后,是否有足够的内存--->6. RandomForest.findBestSplits(baggedInput, metadata, topNodes, nodesForGroup, treeToNodeToIndexInfo, splits, nodeQueue, timer, nodeIdCache) # 找出最优切分点 --->6.1 val (split: Split, stats: ImpurityStats) = binsToBestSplit(aggStats, splits, featuresForNode, nodes(nodeIndex)) #找出每个结点最好的切分--->7. new DecisionTreeClassificationModel(uid, rootNode.toNode, numFeatures, strategy.getNumClasses) # 返回决策树分类模型