图的基本算法(最小生成树)

假设以下情景,有一块木板,板上钉上了一些钉子,这些钉子可以由一些细绳连接起来。假设每个钉子可以通过一根或者多根细绳连接起来,那么一定存在这样的情况,即用最少的细绳把所有钉子连接起来。
更为实际的情景是这样的情况,在某地分布着N个村庄,现在需要在N个村庄之间修路,每个村庄之前的距离不同,问怎么修最短的路,将各个村庄连接起来。
以上这些问题都可以归纳为最小生成树问题,用正式的表述方法描述为:给定一个无方向的带权图G=(V, E),最小生成树为集合T, T是以最小代价连接V中所有顶点所用边E的最小集合。 集合T中的边能够形成一颗树,这是因为每个节点(除了根节点)都能向上找到它的一个父节点。

解决最小生成树问题已经有前人开道,Prime算法和Kruskal算法,分别从点和边下手解决了该问题。

Prim算法##

Prim算法是一种产生最小生成树的算法。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现;并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。

Prim算法从任意一个顶点开始,每次选择一个与当前顶点集最近的一个顶点,并将两顶点之间的边加入到树中。Prim算法在找当前最近顶点时使用到了贪婪算法。

算法描述:

  1. 在一个加权连通图中,顶点集合V,边集合为E
  2. 任意选出一个点作为初始顶点,标记为visit,计算所有与之相连接的点的距离,选择距离最短的,标记visit.
  3. 重复以下操作,直到所有点都被标记为visit
    在剩下的点钟,计算与已标记visit点距离最小的点,标记visit,证明加入了最小生成树。

下面我们来看一个最小生成树生成的过程:
1 起初,从顶点a开始生成最小生成树

图的基本算法(最小生成树)_第1张图片
1

2 选择顶点 a后,顶点啊置成 visit(涂黑),计算周围与它连接的点的距离:
图的基本算法(最小生成树)_第2张图片
2

3 与之相连的点距离分别为 7, 6, 4,选择 C点距离最短,涂黑 C,同时将这条边高亮加入最小生成树:
图的基本算法(最小生成树)_第3张图片
3

4 计算与 a,c相连的点的距离(已经涂黑的点不计算),因为与 a相连的已经计算过了,只需要计算与 c相连的点,如果一个点与 a,c都相连,那么它与 a的距离之前已经计算过了,如果它与c的距离更近,则更新距离值,这里计算的是未涂黑的点距离涂黑的点的最近距离,很明显, ba7bc的距离为 6,更新 b和已访问的点集距离为 6,而 f, ec的距离分别是 8, 9,所以还是涂黑 b,高亮边 bc
图的基本算法(最小生成树)_第4张图片
4

5 接下来很明显, d距离 b最短,将 d涂黑, bd高亮:
图的基本算法(最小生成树)_第5张图片
5

6 f距离 d7,距离 b4,更新它的最短距离值是 4,所以涂黑 f,高亮 bf
图的基本算法(最小生成树)_第6张图片
6

7 最后只有 e了:
图的基本算法(最小生成树)_第7张图片
7

针对如上的图,代码实例如下:

#include
#define INF 10000
using namespace std;
const int N = 6;
bool visit[N];
int dist[N] = { 0, };
int graph[N][N] = { {INF,7,4,INF,INF,INF},   //INF代表两点之间不可达
                    {7,INF,6,2,INF,4}, 
                    {4,6,INF,INF,9,8}, 
                    {INF,2,INF,INF,INF,7}, 
                    {INF,INF,9,INF,INF,1}, 
                    {INF,4,8,7,1,INF}
                  };
int prim(int cur)
{
    int index = cur;
    int sum = 0;
    int i = 0;
    int j = 0;
    cout << index << " ";
    memset(visit, false, sizeof(visit));
    visit[cur] = true;
    for (i = 0; i < N; i++)
        dist[i] = graph[cur][i];//初始化,每个与a邻接的点的距离存入dist
    for (i = 1; i < N; i++)
    {
        int minor = INF;
        for (j = 0; j < N; j++)
        {
            if (!visit[j] && dist[j] < minor)          //找到未访问的点中,距离当前最小生成树距离最小的点
            {
                minor = dist[j];
                index = j;
            }
        }
        visit[index] = true;
        cout << index << " ";
        sum += minor;
        for (j = 0; j < N; j++)
        {
            if (!visit[j] && dist[j]>graph[index][j])      //执行更新,如果点距离当前点的距离更近,就更新dist
            {
                dist[j] = graph[index][j];
            }
        }
    }
    cout << endl;
    return sum;               //返回最小生成树的总路径值
}
int main()
{
    cout << prim(0) << endl;//从顶点a开始
    return 0;
}

Kruskal算法##

Kruskal是另一个计算最小生成树的算法,其算法原理如下。首先,将每个顶点放入其自身的数据集合中。然后,按照权值的升序来选择边。当选择每条边时,判断定义边的顶点是否在不同的数据集中。如果是,将此边插入最小生成树的集合中,同时,将集合中包含每个顶点的联合体取出,如果不是,就移动到下一条边。重复这个过程直到所有的边都探查过。

下面还是用一组图示来表现算法的过程:
1 初始情况,一个联通图,定义针对边的数据结构,包括起点,终点,边长度:

typedef struct _node{
    int val;   //长度
    int start; //边的起点
    int end;   //边的终点
}Node;

图的基本算法(最小生成树)_第8张图片
1

2 在算法中首先取出所有的边,将边按照长短排序,然后首先取出最短的边,将 a, e放入同一个集合里,在实现中我们使用到了并查集的概念:
图的基本算法(最小生成树)_第9张图片
2

3 继续找到第二短的边,将 c, d再放入同一个集合里:
图的基本算法(最小生成树)_第10张图片
3

4 继续找,找到第三短的边 ab,因为 a, e已经在一个集合里,再将 b加入:
图的基本算法(最小生成树)_第11张图片
4

5 继续找,找到 b, e,因为 b, e已经同属于一个集合,连起来的话就形成环了,所以边 be不加入最小生成树:
图的基本算法(最小生成树)_第12张图片
5

6 再找,找到 bc,因为 c, d是一个集合的, a, b, e是一个集合,所以再合并这两个集合:
图的基本算法(最小生成树)_第13张图片
6

这样所有的点都归到一个集合里,生成了最小生成树。

根据上图实现的代码如下:

#include
#define N 7
using namespace std;
typedef struct _node{
    int val;
    int start;
    int end;
}Node;
Node V[N];
int cmp(const void *a, const void *b)
{
    return (*(Node *)a).val - (*(Node*)b).val;
}
int edge[N][3] = {  { 0, 1, 3 },
                    { 0, 4, 1 }, 
                    { 1, 2, 5 }, 
                    { 1, 4, 4 },
                    { 2, 3, 2 }, 
                    { 2, 4, 6 }, 
                    { 3, 4, 7} 
                    };

int father[N] = { 0, };
int cap[N] = {0,};

void make_set()              //初始化集合,让所有的点都各成一个集合,每个集合都只包含自己
{
    for (int i = 0; i < N; i++)
    {
        father[i] = i;
        cap[i] = 1;
    }
}

int find_set(int x)              //判断一个点属于哪个集合,点如果都有着共同的祖先结点,就可以说他们属于一个集合
{
    if (x != father[x])
     {                              
        father[x] = find_set(father[x]);
    }     
    return father[x];
}                                  

void Union(int x, int y)         //将x,y合并到同一个集合
{
    x = find_set(x);
    y = find_set(y);
    if (x == y)
        return;
    if (cap[x] < cap[y])
        father[x] = find_set(y);
    else
    {
        if (cap[x] == cap[y])
            cap[x]++;
        father[y] = find_set(x);
    }
}

int Kruskal(int n)
{
    int sum = 0;
    make_set();
    for (int i = 0; i < N; i++)//将边的顺序按从小到大取出来
    {
        if (find_set(V[i].start) != find_set(V[i].end))     //如果改变的两个顶点还不在一个集合中,就并到一个集合里,生成树的长度加上这条边的长度
        {
            Union(V[i].start, V[i].end);  //合并两个顶点到一个集合
            sum += V[i].val;
        }
    }
    return sum;
}
int main()
{
    for (int i = 0; i < N; i++)   //初始化边的数据,在实际应用中可根据具体情况转换并且读取数据,这边只是测试用例
    {
        V[i].start = edge[i][0];
        V[i].end = edge[i][1];
        V[i].val = edge[i][2];
    }
    qsort(V, N, sizeof(V[0]), cmp);
    cout << Kruskal(0)<

你可能感兴趣的:(图的基本算法(最小生成树))