C/C++位域(Bit-fields)之我见

阅读更多

原文 : http://blog.csdn.net/ztz0223/archive/2008/12/24/3599016.aspx


# //假设硬件平台是intel x86(little endian)    
#   
# typedef unsigned int uint32_t;   
# void inet_ntoa(uint32_t in)    
# {    
#     char b[18];    
#     register char *p;    
#     p = (char *)∈    
# #define UC(b) (((int)b)&0xff)    
#     sprintf(b, "%d.%d.%d.%d\n", UC(p[0]), UC(p[1]), UC(p[2]), UC(p[3]));    
#     printf(b);    
# }    
# int main()    
# {    
#    inet_ntoa(0x12345678);  
#    inet_ntoa(0x87654321);    
# }   
 

 

有点难度的一道题目,其实理解的也很简单。


位域(Bit-fields)分析

 

位域是c++和c里面都有的一个概念,但是位域有一点要注意的有很多问题我们一样样的看:


大端和小端字节序


这个很简单,就是起始点该怎么确定。
先看一个程序:

    union {
    	struct   
    	{
    		unsigned char  a1:2;
    		unsigned char  a2:3;
    		unsigned char  a3:3;
    	}x;
    	unsigned char  b;
    }d;
    
    int  main(int  argc, char * argv[])
    {
    	d.b = 100;
    	return  0;
    }
     

      那么x的a1,a2,a3该怎么分配值,100的二进制是:0110 0100,那么a1到a3是不是就是依次取值恩?
      不是!
      我们先看看100分配位的低端是左边的0还是右边的0?很明显是右边的0,那么我们再看a1到a3的分配是从低端到高端的
      那么,对应的应该是
      <<<<<<--内存增大
      a3   a2  a1
      011  001 00


      内存增大之所以这么写是因为,011是在高位!
      而不是通常认为的的:
      a1   a2  a3
      011  001 00

      还有一个情况多见就是一个二进制的数字转化为点分十进制数值,如何进行,这里涉及到大端还是小端的问题,上面没有涉及,主要是因为上面是一个字节,没有这个问题,多个字节就有大端和小端的问题了,或许我们应该记住这一点就是,在我们的计算机上面,大端和小端都是以字节为准的 , 当然严格来说更应该以位为准不是吗?具体可以参考维基百科上面的一篇文章,他给出了一个以位为准的大小端序的图:


      http://en.wikipedia.org/wiki/Endianess


      下面研究字节为单位的大小端序,继续看代码吧,如下:

      1. int  main(int  argc, char * argv[])
      2. {
      3.     int  a = 0x12345678;
      4.     char  *p = (char  *)&a;
      5.     char  str[20];
      6.     sprintf(str,"%d.%d.%d.%d" , p[0], p[1], p[2], p[3]);
      7.     printf(str);
      8.     return  0;
      9. }

      这个程序假设是小端字节序,那么结果是什么?
      我们看看应该怎么放置呢?
      每个字节8位,0x12345678分成4个字节,就是从高位字节到低位字节:12,34,56,78,那么这里该怎么放?如下:
      ---->>>>>>内存增大
      78 56 34 12

      因为这个是小端,那么小内存对应低位字节,就是上面的结构。

      接下来的问题又有点迷糊了,就是p怎么指向,是不是指向0x12345678的开头--12处?不是!12是我们所谓的开头,但是不是内存

      的开始处,我们看看内存的分布,我们如果了解p[0]到p[1]的操作是&p[0]+1,就知道了,p[1]地址比p[0]地址大,也就是说p的地址

      也是随内存递增的!

      12 ^ p[3]
          |
      34 | p[2]
          |
      56 | p[1]
          |
      78 | p[0]
      内存随着箭头增大!同时小端存储也是低位到高位在内存中的增加!
      这样我们知道了内存怎么分布了

      那么:

      1. sprintf(str,"%d.%d.%d.%d" , p[0], p[1], p[2], p[3]);

      str就是这个结果了:
      120.86.52.18

      那么反过来呢?

      1. int  main(int  argc, char * argv[])
      2. {
      3.     int  a = 0x87654321;
      4.     char  *p = (char  *)&a;
      5.     char  str[20];
      6.     sprintf(str,"%d.%d.%d.%d" , p[0], p[1], p[2], p[3]);
      7.     printf(str);
      8.     return  0;
      9. }

      依旧是小端,8位是一个字节那么就是这样的啦:

      87 ^ p[3]
           |
      65 | p[2]
          |
      43 | p[1]
          |
      21 | p[0]

      结果是:
      33.67.101.-121
      为什么是负的?因为系统默认的char是有符号的,本来是0x87也就是135,大于127因此就减去256得到-121
      那么要正的该怎么的弄?
      如下就是了:

      1. int  main(int  argc, char * argv[])
      2. {
      3.     int  a = 0x87654321;
      4.     unsigned char  *p = (unsigned char  *)&a;
      5.     char  str[20];
      6.     sprintf(str,"%d.%d.%d.%d" , p[0], p[1], p[2], p[3]);
      7.     printf(str);
      8.     return  0;
      9. }

      用无符号的!
      结果:
      33.67.101.135


      位域的符号(正负)

      看完大端和小端以后,再看看位域的取值的问题,上面我们谈到了一些,首先就是位域是按照位来取值的跟我们的int是32位char是8

      位一样,很简单,但是,要注意一点就是位域也有正负,指有符号属性的,就是最高位表示的,也会涉及到补码这个一般被认为非常

      恶心的东西,看看程序吧:

      1. #include 
      2. #include 
      3. #include 
      4. int  main(int  argc, char ** argv)
      5. {
      6.     union
      7.     {
      8.         struct
      9.         {
      10.             unsigned char  a:1;
      11.             unsigned char  b:2;
      12.             unsigned char  c:3;
      13.         }d;
      14.         unsigned char  e;
      15.     } f;
      16.     f.e = 1;
      17.     printf("%d\n" ,f.d.a);
      18.     return  0;
      19. }

      <小端>
      那么输出是什么?
      换一下:

      1. #include 
      2. #include 
      3. #include 
      4. int  main(int  argc, char ** argv)
      5. {
      6.     union
      7.     {
      8.         struct
      9.         {
      10.             char  a:1;
      11.             char  b:2;
      12.             char  c:3;
      13.         }d;
      14.         char  e;
      15.     } f;
      16.     f.e = 1;
      17.     printf("%d\n" ,f.d.a);
      18.     return  0;
      19. }

      输出又是什么?


      小端的话,那么,再d.a上面分得1,而这个是无符号的char,那么前者输出是1,没有问题,第二个输出是-1,哈哈。
      为什么?


      第二个是无符号的,就一个位分得1,那么就是最高位分得1,就是负数,负数用的补码,实际的值是取反加1,就是0+1=1,再取符号负数,就是-1.


      整型提升

      最后的打印是用的%d,那么就是对应的int的打印,这里的位域肯定要提升,这里有一点,不管是提升到有符号还是无符号,都是自

      己的符号位来补充,而不改变值的大小(这里说的不改变值大小是用相同的符号属性来读取),负数前面都补充1,正数都是用0来补充

      ,而且也只有这样才能保证值不变,比如,char提升到int就是前面补充24个char的最高位,比如:

      1.  char  c = 0xf0; 
      2.  int  p = c;
      3.  printf("%d %d\n" ,c,p);

      输出:-16 -16
      p实际上就是0xfffffff0,是负数因此就是取反加1得到
      c是一个负数那么转化到x的时候就是最高位都用1来代替,得到的数不会改变值大小的。
      再看:

      1.  char  c = 0xf0;
      2.  unsigned int  x = c;
      3.  printf("%u\n" ,x);

      得到的结果是4294967280,也就是0xfffffff0,记住,无符号用%u来打印。

      地址不可取


      最后说的一点就是位域是一个字节单元里面的一段,是没有地址的!


      附录

       

      最后附上《The C Book》这本书的一段说法:
      While we're on the subject of structures, we might as well look at bitfields. They can only be declared inside a

      structure or a union, and allow you to specify some very small objects of a given number of bits in length. Their

      usefulness is limited and they aren't seen in many programs, but we'll deal with them anyway. This example should

      help to make things clear:

      1. struct  {
      2.       /* field 4 bits wide */
      3.       unsigned field1 :4;
      4.       /*
      5.        * unnamed 3 bit field
      6.        * unnamed fields allow for padding
      7.        */
      8.       unsigned        :3;
      9.       /*
      10.        * one-bit field
      11.        * can only be 0 or -1 in two's complement!
      12.        */
      13.       signed field2   :1;
      14.       /* align next field on a storage unit */
      15.       unsigned        :0;
      16.       unsigned field3 :6;
      17. }full_of_fields;

      Each field is accessed and manipulated as if it were an ordinary member of a structure. The keywords signed and

      unsigned mean what you would expect, except that it is interesting to note that a 1-bit signed field on a two's

      complement machine can only take the values 0 or -1. The declarations are permitted to include the const and

      volatile qualifiers.

      The main use of bitfields is either to allow tight packing of data or to be able to specify the fields within some

      externally produced data files. C gives no guarantee of the ordering of fields within machine words, so if you do

      use them for the latter reason, you program will not only be non-portable, it will be compiler-dependent too. The

      Standard says that fields are packed into ‘storage units’, which are typically machine words. The packing order, and

      whether or not a bitfield may cross a storage unit boundary, are implementation defined. To force alignment to a

      storage unit boundary, a zero width field is used before the one that you want to have aligned.

      Be careful using them. It can require a surprising amount of run-time code to manipulate these things and you can

      end up using more space than they save.

      Bit fields do not have addresses—you can't have pointers to them or arrays of them.


      最后

      了解了这些我想网宿的那道题目也很简单了。希望大家指正。

      你可能感兴趣的:(C,C++,C#,F#,UP)