在HashMap的API中定义中有具体说明“Note that this implementation is not synchronized.”,此类是不同步方法,HashMap数据结构在单线程应用中可正常使用。在blog中看到有人在并发环境中使用HashMap时,出现过占用CPU100%问题,结合HashMap源码我们对出现占用CPU问题进行分析。
一、创建HashMap
public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this.loadFactor = loadFactor; threshold = initialCapacity; init(); } public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } public HashMap() { this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR); }
threshold=initialCapacity:设置容量,默认(DEFAULT_INITIAL_CAPACITY=16)
loadFactor:设置负载因子,默认(DEFAULT_LOAD_FACTOR=0.75)
二、存值
public V put(K key, V value) { if (table == EMPTY_TABLE) { inflateTable(threshold); } if (key == null) return putForNullKey(value); int hash = hash(key); int i = indexFor(hash, table.length); for (Entrye = table[i]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; addEntry(hash, key, value, i); return null; }
首先判断table属性是否进行初始化容量大小,使用inflateTable方法进行初始化容量:
private void inflateTable(int toSize) { //计算toSize大于等于最接近number的2的冪数 int capacity = roundUpToPowerOf2(toSize); //用计算出的容量*负载因子,获得下次调整的容量大小 threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1); //初始化table属性 table = new Entry[capacity]; initHashSeedAsNeeded(capacity); }
threshold 为第一步设置的容量的值,设置完容量后继续向下执行:
//hashMap允许存储null值的原因 if (key == null) return putForNullKey(value); //获取Key的hash值 int hash = hash(key); //根据Key的hash值和table属性的容量计算出key该放在table中的索引坐标 int i = indexFor(hash, table.length);
继续向下执行:
for (Entrye = table[i]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } }
获取到key在table中的索引,取出table中该索引对应的key和value信息,如果key和当前key相同,将新value替换oldvalue并将oldValue返回。
//记录hashMap修改的次数 modCount++; 将key 和 value键值对添加到table属性中 addEntry(hash, key, value, i);
三、储存键值对
void addEntry(int hash, K key, V value, int bucketIndex) { //当前table的长度大于或等于根据负载因子计算的下一次扩充的值时 if ((size >= threshold) && (null != table[bucketIndex])) { //table 长度重新扩充,并重新获取key的新的hash值及其新的索引 resize(2 * table.length); hash = (null != key) ? hash(key) : 0; bucketIndex = indexFor(hash, table.length); } createEntry(hash, key, value, bucketIndex); } void createEntry(int hash, K key, V value, int bucketIndex) { Entrye = table[bucketIndex]; table[bucketIndex] = new Entry<>(hash, key, value, e); size++; } static class Entry implements Map.Entry { final K key; V value; Entry next; int hash; Entry(int h, K k, V v, Entry n) { value = v; next = n; key = k; hash = h; } ...... }
在看到createEntry方法的源码时,我们就能将HashMap中的数据模型构建出来,即数组与链表相结合使用,当存在多个hash值一样时,存在数组table的同一个索引上,放在该索引上存储的链表的第一个位置上。
结构如下所示,通过向链表顶部添加来解决hash冲突问题。
table[0]=Entry,?> table[1]=Entry,>=>next=>Entry,?> table[2]=Entry,>=>next=>Entry,?>=>next=>Entry,?>
接下来我们看下resize方法,resize方法主要作用是对table属性进行扩容
void resize(int newCapacity) { Entry[] oldTable = table; int oldCapacity = oldTable.length; if (oldCapacity == MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return; } Entry[] newTable = new Entry[newCapacity]; transfer(newTable, initHashSeedAsNeeded(newCapacity)); table = newTable; threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1); } void transfer(Entry[] newTable, boolean rehash) { int newCapacity = newTable.length; for (Entrye : table) { while(null != e) { Entry next = e.next; if (rehash) { e.hash = null == e.key ? 0 : hash(e.key); } int i = indexFor(e.hash, newCapacity); e.next = newTable[i]; newTable[i] = e; e = next; } } }
当HashMap的长度满时