Hadoop Hbase适合存储哪类数据?

阅读更多
Hadoop Hbase适合存储哪类数据?

最适合使用Hbase存储的数据是非常稀疏的数据(非结构化或者半结构化的数据)。Hbase之所以擅长存储这类数据,是因为Hbase是column-oriented列导向的存储机制,而我们熟知的RDBMS都是row- oriented行导向的存储机制(郁闷的是我看过N本关于关系数据库的介绍从来没有提到过row- oriented行导向存储这个概念)。在列导向的存储机制下对于Null值得存储是不占用任何空间的。比如,如果某个表 UserTable有10列,但在存储时只有一列有数据,那么其他空值的9列是不占用存储空间的(普通的数据库MySql是如何占用存储空间的呢?)。

Hbase适合存储非结构化的稀疏数据的另一原因是他对列集合 column families 处理机制。 打个比方,ruby和python这样的动态语言和c++、java类的编译语言有什么不同? 对于我来说,最显然的不同就是你不需要为变量预先指定一个类型。Ok ,现在Hbase为未来的DBA也带来了这个激动人心的特性,你只需要告诉你的数据存储到Hbase的那个column families 就可以了,不需要指定它的具体类型:char,varchar,int,tinyint,text等等。

Hbase还有很多特性,比如不支持join查询,但你存储时可以用:parent-child tuple 的方式来变相解决。
由于它是Google BigTable的 Java 实现,你可以参考一下: google bigtable 。
下面3副图是Hbase的架构、数据模型和一个表格例子,你也可以从: Hadoop summit 上 获取更多的信息。












你可能感兴趣的:(HBase,Hadoop,数据结构,Python,Google)