- java23种设计模式-命令模式
千里码!
设计模式后端技术#Java设计模式命令模式
命令模式(CommandPattern)学习笔记1.模式定义行为型设计模式,将请求封装为对象,使请求的发送者与接收者解耦。支持请求的排队、记录、撤销/重做等操作。2.适用场景✅需要将操作参数化✅需要支持事务操作(撤销/重做)✅需要实现任务队列/线程池✅需要记录操作历史✅需要支持宏命令(命令组合)3.模式结构knowsexecutescreatescreates«interface»Command+
- ai大模型自动化测试-TensorFlow Testing 测试模型实例
小赖同学啊
人工智能自动化测试(apppcAPI)python人工智能tensorflowpython
AI大模型自动化测试是确保模型质量、可靠性和性能的关键环节,以下将从测试流程、测试内容、测试工具及测试挑战与应对几个方面进行详细介绍:测试流程测试计划制定确定测试目标:明确要测试的AI大模型的具体功能、性能、安全性等方面的目标,例如评估模型在特定任务上的准确率、召回率等。定义测试范围:界定测试所涵盖的模型功能模块、数据类型、应用场景等,比如是否包括图像识别、自然语言处理等不同功能。规划测试资源:确
- 软件工程应试复习(考试折磨版)
愚戏师
软件工程
针对学校软件工程考试,参考教材《软件工程导论(第6版)》1-8章学习的艺术:不断地尝试,我一定会找到高效用的方法,让学习变成一门艺术,从应试备考中解救出我的时间同胞们。好嘞!既然时间紧迫,咱们就用「闪电战」学习法,把知识点当零食一样快速吞下(但记得消化哦)!上攻略三步速成秘籍(测试版):应试求生指南!1.开挂第一步:「抓大放小」狙击战!锁定BOSS级考点:翻开目录,用荧光笔把老师敲黑板的内容(PP
- 脑洞打开话题:deepseek这么火,什么时候能完全代替人类?
噔噔噔噔@
网络
AI完全代替人类是一个复杂且充满争议的话题,涉及技术、伦理、社会和经济等多个方面。目前来看,AI在某些领域已经表现出超越人类的能力,但要完全代替人类仍然面临许多挑战和限制。以下是关于AI何时可能完全代替人类的一些分析和思考:1.技术层面的限制尽管AI在某些特定任务上已经超越了人类(如图像识别、语音识别、围棋等),但要完全代替人类,AI需要在以下几个方面取得突破:通用人工智能(AGI)目前的AI主要
- AI人工智能机器学习之监督线性模型
rockfeng0
人工智能机器学习sklearn
1、概要 本篇学习AI人工智能机器监督学习框架下的线性模型,以LinearRegression线性回归和LogisticRegression逻辑回归为示例,从代码层面测试和讲述监督学习中的线性模型。2、监督学习之线性模型-简介监督学习和线性模型是的两个重要概念。监督学习是一种机器学习任务,其中模型在已标记的数据集上进行训练。线性模型是一类通过线性组合输入特征来进行预测的模型。线性模型的基本形式可
- 如何解析返回的JSON数据?
数据小小爬虫
jsonpython开发语言
解析返回的JSON数据是爬虫和API开发中的常见任务。在Java中,可以使用多种库来解析JSON数据,例如Jackson、Gson或org.json。以下是使用这些库解析JSON数据的详细步骤和示例代码。1.使用Jackson解析JSON数据Jackson是一个高性能的JSON处理库,支持将JSON数据映射到Java对象(反序列化)和将Java对象转换为JSON(序列化)。(1)添加依赖在pom.
- 人工智能深度学习系列—深入探索KL散度:度量概率分布差异的关键工具
学步_技术
自动驾驶人工智能人工智能深度学习自动驾驶机器学习
人工智能深度学习系列—深度解析:交叉熵损失(Cross-EntropyLoss)在分类问题中的应用人工智能深度学习系列—深入解析:均方误差损失(MSELoss)在深度学习中的应用与实践人工智能深度学习系列—深入探索KL散度:度量概率分布差异的关键工具人工智能深度学习系列—探索余弦相似度损失:深度学习中的相似性度量神器人工智能深度学习系列—深度学习中的边界框回归新贵:GHM(GeneralizedH
- 点云配准(点云拼接)论文综述
点云SLAM
点云数据处理技术点云数据处理点云配准DeepICPICP深度学习配准方法特征匹配
点云配准(点云拼接)论文综述1.引言点云配准(PointCloudRegistration)是三维计算机视觉与机器人感知领域的核心任务,其目标是通过几何变换将多个点云对齐至统一坐标系,形成完整的场景表示。该技术广泛应用于自动驾驶、增强现实、工业检测、医学影像等领域。随着传感器技术(如LiDAR、RGB-D相机)的进步与深度学习的发展,点云配准方法经历了从传统优化算法到数据驱动模型的演变。本文系统综
- CPD(Coherent Point Drift)非刚性点云配准算法
点云SLAM
点云数据处理技术算法概率论机器学习非刚性配准CPD配准算法EM算法非刚性拼接
CPD(CoherentPointDrift)非刚性点云配准算法详解一、算法概述CPD(CoherentPointDrift)是一种基于概率模型的非刚性点云配准方法,由AndriyMyronenko等人在2009年提出。它通过将点云配准问题转化为概率密度估计问题,结合高斯混合模型(GMM)与正则化形变场,能够有效处理复杂形变(如人体运动、器官形变)的点云对齐任务。核心特点:非刚性对齐:支持大范围、
- 解读 DeepSeek 关键 RL 算法 GRPO
进一步有进一步的欢喜
LLM算法DeepSeekGRPO
DeepSeekGRPO:面向超大规模RLHF的梯度正则化策略优化算法引言在当下人工智能蓬勃发展的浪潮里,DeepSeek无疑是一颗耀眼的明星,频繁出现在各类科技前沿讨论中,热度持续攀升。从惊艳的模型表现,到不断拓展的应用场景,DeepSeek正以强劲之势重塑着行业格局。大家不难发现,无论是复杂的自然语言处理任务,还是充满挑战的智能推理难题,DeepSeek都能展现出卓越的性能。而这斐然成绩的背后
- WebGPU与Web框架集成
天涯学馆
WebGL3D图形图像技术前端javascriptreact.jswebgl图像处理3d
目录React集成Vue集成Angular集成Svelte集成React集成将WebGPU与React集成,可以让您在React应用中利用现代Web图形和计算API来创建高性能的3D图形和计算任务。以下是一个简化的指南,介绍如何在React应用中集成WebGPU:1.准备环境确保你的开发环境支持WebGPU。目前,大多数现代浏览器已开始支持WebGPU,但可能需要在实验性特性中开启。同时,确保你的
- 【深度学习】Transformer入门:通俗易懂的介绍
知识靠谱
深度学习深度学习transformer人工智能
【深度学习】Transformer入门:通俗易懂的介绍一、引言二、从前的“读句子”方式三、Transformer的“超级阅读能力”四、Transformer是怎么做到的?五、Transformer的“多视角”能力六、Transformer的“位置记忆”七、Transformer的“翻译流程”八、Transformer为什么这么厉害?九、Transformer的应用十、总结一、引言在自然语言处理(N
- 爆发的AI智能体(4):智能体构建与开发
caridle
人工智能
1.理解智能体的基本概念在开始构建智能体之前,重要的是要理解智能体的基本概念。智能体可以被看作是一个系统,它能够感知环境,拥有一定的推理能力,并能根据这些信息做出决策和行动。智能体的基本架构通常包括感知模块、推理模块和行动模块。2.确定智能体的目标和功能在构建智能体之前,需要明确其目标和功能。这包括确定智能体需要完成的任务、它将如何与用户或其他系统交互,以及它需要满足的性能标准。例如,一个客服智能
- 龙龙内存遍历神器:高效CPU内存检测与数据分析利器
山峰999
算法软件工程测试工具windows
在软件开发与游戏修改领域,一款功能强大的内存遍历工具无疑是每位开发者与修改者的必备之选。今天,我们为大家隆重介绍一款备受好评的内存遍历神器——龙龙内存遍历工具电脑版。这款工具以其卓越的性能、丰富的功能以及便捷的操作体验,赢得了广大用户的青睐。接下来,让我们一同深入了解这款工具的独特魅力。一、软件概述龙龙内存遍历工具电脑版是一款专为CPU内存检测设计的强大工具。它不仅能够快速检测CPU的内存情况,还
- 【Mysql进阶】从链式复制到主从复制:5步转换MySQL复制架构,你真的会了吗?
墨瑾轩
MySql入门~精通mysql架构android
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣从链式复制到主从复制:5步转换MySQL复制架构,你真的会了吗?VS引言❓大家好,今天我们来聊一聊MySQL中的复制架构转换——从链式复制到主从复制。在某些情况下,你可能需要将现有的链式复制架构转换为主从复制架构,以简化管理和提高性能。你是否曾经因为复杂的复制
- MediaToolkit:.NET 开发者的多媒体处理工具
今晚打老虎z
.net
在开发过程中处理音频和视频文件是许多应用程序的重要功能。MediaToolkit是一个强大的库,帮助轻松处理这些多媒体文件。封装了FFmpeg的功能,使得复杂的任务变得简单。支持更多功能,如视频裁剪、缩略图提取和转码等。安装第一步,老规矩,先安装PM>Install-PackageMediaToolkit主要功能1.解析媒体元数据MediaToolkit可以解析媒体文件的元数据,视频的时长、分辨率
- 一文读懂智能体架构:模块化设计如何提升效率与灵活性
功城师
人工智能大语言模型自然语言处理大模型深度学习智能体LLM
随着人工智能技术的快速发展,智能体在企业知识管理、客户服务、业务数据分析等领域的应用愈加广泛。一个优秀的智能体设计不仅要具备高效处理用户需求的能力,还需要灵活适配不同场景的任务需求。本文将通过一个智能体的具体设计流程图,结合实际案例,详细解析其架构设计、功能实现及背后的技术逻辑,帮助大家深入了解智能体的构建过程。一、智能体设计的核心思路在智能体的设计过程中,最关键的是对用户需求的精准理解和快速响应
- 复杂脑网络之图论参数计算(BCT工具包)
addBr
matlab
以下内容一定漏洞百出[求饶.jpg]...作为渣渣小白,一点一点摸索怎么使用BCT工具包,目前只会计算几个参数,原理神马的也没太明白呢。接下来的任务就是从原理公式入手,再对逐个参数的计算代码进行理解...所以内容会不断改进和补充。有错误请尽管指出,感谢~一、计算聚类系数、特征路径长度、小世界参数大概思路:功能连接矩阵--->去除虚假连接的矩阵--->加权矩阵--->计算图论参数1.功能连接矩阵--
- DeepSeek Coder
百态老人
人工智能大数据笔记
DeepSeekCoder是由DeepSeekAI推出的一系列代码生成模型,旨在解决编程中的各种任务,如代码生成、补全、调试和优化等。以下是对该模型的详细分析:模型背景与特点模型规模与训练数据:DeepSeekCoder系列模型从头开始训练,覆盖了超过80种编程语言,总参数量从1B到33B不等,其中包含基础版和指令调优版。模型基于高质量的代码数据集进行训练,包含约2万亿个token,其中87%为代
- Spark Streaming 容错机制详解
goTsHgo
spark-streaming大数据分布式spark-streaming大数据分布式
SparkStreaming是Spark生态系统中用于处理实时数据流的模块。它通过微批处理(micro-batch)的方式将实时流数据进行分片处理,每个批次的计算本质上是Spark的批处理作业。为了保证数据的准确性和系统的可靠性,SparkStreaming实现了多种容错机制,包括数据恢复、任务失败重试、元数据恢复等。接下来,我们将从底层原理和源代码的角度详细解释SparkStreaming是如何
- Spark提交任务
docsz
sparkspark大数据
1、Spark提交任务到Yarn1.1、DwKuduAppspark-submit--classcom.io.etl.dwkudu.DwKuduApp\--files/etl/etl-dwkudu/conf/doris.property,/etl/etl-dwkudu/conf/redis.property,/etl/etl-dwkudu/conf/log4j.property\--mastery
- Oracle数据库分区自动删除
deadknight9
Oracle运维数据库
说明:该存储过程部署后,设置成定时任务,每天执行。每次执行删除partition_position='2'的分区,删除之后,partition_position='3'的分区会前移到partition_position为'2';CREATEORREPLACEPROCEDUREBILL_CENT_JILI.DAY_PARTITIONASv_p_namevarchar2(2000);v_p_numnu
- 快速学习Django框架以开发Web API
百锦再@新空间代码工作室
Python-39学习django前端
简介Django是一个高级PythonWeb框架,它鼓励快速开发和简洁实用的设计。由经验丰富的开发者构建,Django可以为你处理大量的Web开发任务,使你能够专注于编写应用的关键组件。Django的模块化设计、可复用性和广泛的社区支持,使其成为开发Web应用和API的理想选择。在本文中,我们将探讨如何使用Django开发WebAPI。我们将首先了解Django的基本结构,然后学习如何创建一个简单
- ansible--Playbook剧本
henrenzhendexyw
ansible
Playbook剧本常用于复杂任务的管理,以及管理经常要完成的任务playbook也是通过模块和它的参数,在特定主机上执行任务playbook是一个文件,该文件中需要通过yaml格式进行书写YAMLYAMLAin'taMarkupLanguage:YAML不是一个标记语言yaml语法规范yaml文件的文件名,一般以yml或yaml作为扩展名文件一般以---作为第一行,不是必须的,但是常用键值对使用
- 【react】进阶教程02
咔咔库奇
reactreact.js前端前端框架
目录一、深度性能优化1.列表渲染优化(虚拟列表)2.使用WebWorkers处理CPU密集型任务二、复杂状态管理场景1.全局状态分层(Context+useReducer)2.异步状态管理中间件(ReduxThunk)三、高级组件模式扩展1.控制反转(InversionofControl)2.Headless组件模式四、服务端渲染与静态生成(Next.js集成)1.基础SSR实现2.静态生成(SS
- 详细理解React的Fiber结构
芋圆不想 圆
react.js前端前端框架
一、为什么会出现Fiber旧版React通过递归的方式进行渲染,使用的是JS引擎自身的函数调用栈,它会一直执行到栈空为止。而Fiber实现了自己的组件调用栈,它以链表的形式遍历组件树,可以灵活的暂停、继续和丢弃执行的任务。实现方式是使用了浏览器requestIdleCallback这一API因为需要给用户制造一种应用加载很快的假象,所以不能让一个程序一直霸占着资源,需要通过调度策略来合理分配资源,
- 深入理解C++ 线程池:动手实践与源码解析
深度Linux
C/C++全栈开发C/C++线程池Linux开发
在当今多核处理器横行的时代,多任务处理已然成为各类软件提升性能的关键“武器”。想象一下,你正使用一款图片处理软件,它需要同时对多张图片进行滤镜添加、尺寸调整等操作;又或者是一个网络服务器,瞬间要应对来自四面八方的海量用户请求。面对这些场景,如果为每个任务单独创建一个线程,任务结束后再销毁线程,频繁的线程创建与销毁操作,将会带来巨大的开销,就如同让一个短跑运动员不停地进行百米冲刺,很快就会体力不支。
- 高并发环境下的C++ 定时器解决方案
深度Linux
C/C++全栈开发linuxC/C++红黑树定时器
在当今数字化时代,互联网应用如潮水般涌现,高并发场景随处可见。从电商平台的促销抢购,到在线游戏的实时对战,再到金融交易系统的频繁交互,海量的用户请求蜂拥而至,这对系统的性能和响应速度提出了前所未有的挑战。在这些高并发应用的背后,C++定时器扮演着至关重要的角色,它就像一位精准的时间管理者,掌控着任务的执行节奏,确保系统有条不紊地运行。今天,我们就一起来深入探讨高并发环境下的C++定时器解决方案,揭
- 《流程思维》:解码流程管理本质,赋能企业高效进化
流程人工智能深度学习
这是一本让“流程”从工具升维为战略思维的管理指南!书籍概况王玉荣与葛新红合著的《流程思维》,是一部系统阐述流程管理底层逻辑与实战价值的著作。作者基于多年企业咨询经验,将流程从“操作步骤”的浅层定义中剥离,赋予其“战略支撑”“动态进化”“价值创造”等深刻内涵。书中不仅以生态化视角重新定义流程,更结合数字化时代背景,剖析IT系统、数据资产与流程管理的深度融合路径,并通过大量制造业、服务业案例,揭示流程
- Matlab 三维网格数据读取写入
程序员杨弋
Matlab应用篇matlab开发语言
三维网格数据在计算机图形学、计算机辅助设计等领域中广泛应用,在Matlab中读取和处理三维网格数据是一项重要的任务,本文将介绍如何使用Matlab读取、处理和写入三维网格数据。一、读取三维网格数据Matlab提供了许多函数用于读取三维网格数据,常见的格式包括STL、OBJ、PLY等,这里以STL格式为例,介绍如何使用Matlab读取三维网格数据。1、使用stlread函数读取STL文件stlrea
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio