Python玩转人工智能最火框架 TensorFlow应用实践

Python玩转人工智能最火框架 TensorFlow应用实践

  • 第1章 课程整体介绍

    课程背景简介,项目成果演示,知识点和软件简介,让大家对接下来的学习心中有数

    •  1-1 课程整体介绍及导学
  • 第2章 人工智能基础知识

    人工智能、神经网络、机器学习、深度学习、激活函数、过拟合、卷积神经网络、循环神经网络等知识的循序渐进讲解。培养大家对课程的兴趣,了解人工智能前景,对人工智能抱持正确态度

    •  2-1 什么是人工智能试看
    •  2-2 人工智能前景试看
    •  2-3 人工智能需要的基本数学知识试看
    •  2-4 人工智能简史
    •  2-5 AI、机器学习和深度学习的关联
    •  2-6 什么是机器学习
    •  2-7 面对AI,我们应有的态度
    •  2-8 什么是过拟合
    •  2-9 什么是深度学习

    Python玩转人工智能最火框架 TensorFlow应用实践_第1张图片

     

     

其它学习课程目录:

 从零起步 系统入门Python爬虫工程师

全面系统Python3入门+进阶课程

Django+小程序技术打造微信小程序助手

强力Django+杀手级xadmin开发在线教育网站 

Python高级核心技术97讲 系列教程

链接:https://pan.baidu.com/s/1HRPQvQ0O_8Te4_Dgu5_bfg
提取码:vfan

免费分享,但是X度限制严重,如若链接失效点击链接或搜索加群 群号517432778,点击加群

Python玩转人工智能最火框架 TensorFlow应用实践_第2张图片

 

 

  • 第3章 TensorFlow简介和开发环境搭建

    TensorFlow是什么,TensorFlow原理和前景,TensorFlow和其他框架的对比(例如 Theano,ScikitLearn,Keras,Caffe2,PyTorch等)。开发环境搭建,并提供讲师已经配置好开发环境的虚拟机镜像

    •  3-1 什么是TensorFlow
    •  3-2 TensorFlow和其他机器学习库的对比1
    •  3-3 如何学习TensorFlow
    •  3-4 TensorFlow前景
    •  3-5 如何使用课程提供的虚拟机文件
    •  3-6 安装VirtualBox
    •  3-7 安装Ubuntu
    •  3-8 配置Ubuntu系统
    •  3-9 安装Python
    •  3-10 安装TensorFlow(上)
    •  3-11 安装TensorFLow(下)
    •  3-12 安装Python类库
  • 第4章 TensorFlow原理与进阶(代码实践)

    TensorFlow核心概念,TensorFlow激励函数,TensorFlow构建神经网络,TensorFlow优化器,可视化利器TensorBoard,TensorFlow解决过拟合,TensorFlow实现卷积神经网络和循环神经网络等。通过生动图文原理解释和实例,循序渐进掌握TensorFlow

    •  4-1 从HelloWorld开始
    •  4-2 TensorFlow的编程模式
    •  4-3 TensorFlow的基础结构
    •  4-4 图和会话
    •  4-5 Python常用库Numpy的使用
    •  4-6 什么是Tensor(上)
    •  4-7 什么是Tensor(下)
    •  4-8 图和会话原理及案例(上)
    •  4-9 图和会话原理及案例(下)
    •  4-10 可视化利器TensorBoard(上)
    •  4-11 可视化利器TensorBoard(下)
    •  4-12 酷炫模拟游乐园PlayGround
    •  4-13 常用Python库Matplotlib
    •  4-14 综合小练习:梯度下降解决线性回归(上)
    •  4-15 综合小练习:梯度下降解决线性回归(中)
    •  4-16 综合小练习:梯度下降解决线性回归(下)
    •  4-17 激活函数(上)
    •  4-18 激活函数(下)
    •  4-19 动手实现CNN卷积神经网络(一)
    •  4-20 动手实现CNN卷积神经网络(二)
    •  4-21 动手实现CNN卷积神经网络(三)
    •  4-22 动手实现CNN卷积神经网络(四)
    •  4-23 动手实现CNN卷积神经网络(五)
    •  4-24 动手实现RNN-LSTM循环神经网络(一):背景和知识点
    •  4-25 动手实现RNN-LSTM循环神经网络(二):编写实用方法(上)
    •  4-26 动手实现RNN-LSTM循环神经网络(三):编写实用方法(中)
    •  4-27 动手实现RNN-LSTM循环神经网络(四):编写实用方法(下)1
    •  4-28 动手实现RNN-LSTM循环神经网络(四):编写实用方法(下)2
    •  4-29 动手实现RNN-LSTM循环神经网络(五):编写神经网络模型(上)
    •  4-30 动手实现RNN-LSTM循环神经网络(六):编写神经网络模型(中)1
    •  4-31 动手实现RNN-LSTM循环神经网络(六):编写神经网络模型(中)2
    •  4-32 动手实现RNN-LSTM循环神经网络(七):编写神经网络模型(下)
    •  4-33 动手实现RNN-LSTM循环神经网络(八):编写训练方法(上)
    •  4-34 动手实现RNN-LSTM循环神经网络(九):编写训练方法(下)
    •  4-35 动手实现RNN-LSTM循环神经网络(十):编写测试方法
    •  4-36 动手实现RNN-LSTM循环神经网络(十一):实际训练和测试
  • 第5章 案例一 会作曲的人工智能

    结合RNN-LSTM开发能作出动听旋律的炫酷人工智能:背景和知识点简介,开发环境配置,原理讲解,代码实现,训练模型和测试

    •  5-1 背景和知识点简介
    •  5-2 音乐和数学的联系
    •  5-3 什么是MIDI文件
    •  5-4 配置开发环境
    •  5-5 编写转换MIDI到MP3的方法
    •  5-6 Python音乐库Music21的使用和测试方法
    •  5-7 编写整个神经网络模型
    •  5-8 编写从训练文件获取音符的方法
    •  5-9 编写从预测数据来生成音乐的方法
    •  5-10 编写训练神经网络的方法(一)
    •  5-11 编写训练神经网络的方法(二)
    •  5-12 编写训练神经网络的方法(三)
    •  5-13 编写神经网络生成音乐的方法(一)
    •  5-14 编写神经网络生成音乐的方法(二)
    •  5-15 纯TensorFlow版的预告
  • 第6章 案例二 会Photoshop的人工智能

    结合DCGAN开发会PS的人工智能。从此P图不用愁,分分钟搞定N多图片的创建:背景和知识点简介,开发环境配置,原理讲解,代码实现,训练模型和测试

    •  6-1 背景和知识点简介
    •  6-2 配置开发环境
    •  6-3 什么是GAN(生成对抗网络)
    •  6-4 什么是DCGAN
    •  6-5 编写DCGAN中的判别器模型(上)
    •  6-6 编写DCGAN中的判别器模型(下)
    •  6-7 编写DCGAN中的生成器模型
    •  6-8 编写训练神经网络的方法(上)
    •  6-9 编写训练神经网络的方法(下)
    •  6-10 编写神经网络生成图片的方法
    •  6-11 代码完成和测试模型
    •  6-12 纯TensorFlow版的预告

你可能感兴趣的:(Python玩转人工智能最火框架 TensorFlow应用实践)